Pauly, D., Trites, A. W., Capuli, E. & Christensen, V. Diet composition and trophic levels of marine mammals. ICES J. Mar. Sci. 55, 467–481 (1998).
Google Scholar
Wilson, D. E. & Mittermeier, R. A. Handbook of the mammals of the world. Sea mammals (Lynx Edicions 2014).
Plagányi, E. E. & Butterworth, E. S. Competition with fisheries in Encyclopedia of Marine Mammals (eds W. F. Perrin, B. Würsing, & J. G. M. Thewsissen) 269–275 (Academic Press, 2009).
Read, A. J. The looming crisis: interactions between marine mammals and fisheries. J. Mammal. 89, 541–548 (2008).
Google Scholar
Morissette, L., Christensen, V. & Pauly, D. Marine mammal impacts in exploited ecosystems: would large scale culling benefit fisheries? PLoS One 7, e43966 (2012).
Gerber, L. R., Morissette, L., Kaschner, K. & Pauly, D. Should whales be culled to increase fishery yield?. Science 323, 880–881 (2009).
Google Scholar
DeMaster, D. P., Fowler, C. W., Perry, S. L. & Richlen, M. F. Predation and competition: the impact of fisheries on marine-mammals populations over the next one hundred years. J. Mammal. 82, 641–651 (2001).
Google Scholar
Smith, T. D. Interactions between marine mammals and fisheries: an unresolved problem for fisheries research in Whales, seals, fish and man (eds A.S. Blix, L. Walløe, & t Ø. Ultan) 527–536 (Elsevier Science, 1995).
Hall, A. J., Watkins, J. & Hammond, P. S. Seasonal variation in the diet of harbour seals in the south-western North Sea. Mar. Ecol. Prog. Ser. 170, 269–281 (1998).
Google Scholar
Santos, M. B., Martin, V., Fernández, A. & Pierce, G. J. Insights into the diet of beaked whales from the atypical mass stranding in the Canary Islands in September 2002. J. Mar. Biol. Assoc. U. K. 87, 243–251 (2007).
Google Scholar
Gómez-Campos, E., Borrell, A., Cardona, L., Forcada, J. & Aguilar, A. Overfishing of small pelagic fishes increases trophic overlap between immature and mature striped dolphins in the Mediterranean sea. PLoS One 6, e24554 (2011).
Google Scholar
Adam, P. J. & Berta, A. Evolution of prey capture strategies and diet in the pinnipedimorpha (Mammalia, Carnivora). Oryctos 4, 83–107 (2002).
Kienle, S. S. & Berta, A. The better to eat you with: the comparative feeding morphology of phocid seals (Pinnipedia, Phocidae). J. Anat. 228, 396–413 (2016).
Google Scholar
McCurry, M. R., Fitzgerald, E. M. G., Evans, A. R., Adams, J. W. & McHenry, C. R. Skull shape reflects prey size niche in toothed whales. Biol. J. Linn. Soc. 121, 936–946 (2017).
Google Scholar
McCurry, M. R. et al. The remarkable convergence of skull shape in crocodilians and toothed whales. Proc. R. Soc. B 284, 20162348 (2017).
Google Scholar
Davis, R. W. Marine Mammals: adaptations for an aquatic life (Springer, 2019).
Google Scholar
Marshall, C. D. & Pyenson, N. D. Feeding in aquatic mammals: an evolutionary and functional approach in Feeding in vertebrates: evolution, morphology, behaviour, biomechanics. Fascinating Life Sciences (eds V. Bels & I. Whishaw) 743–785 (Springer, Cham, 2019).
Werth, A. J. Mandibular and dental variation and the evolution of suction feeding in Odontoceti. J. Mammal. 87, 579–588 (2006).
Google Scholar
Kelley, N. P. & Motani, R. Trophic convergence drives morphological convergence in marine tetrapods. Biol. Lett. 11, 20140709 (2015).
Google Scholar
Kienle, S. S., Law, C. J., Costa, D. P., Berta, A. & Mehta, R. S. Revisiting the behavioural framework of feeding in predatory aquatic mammals. Proc. R. Soc. B 284, 20171035 (2017).
Google Scholar
Segura, A. M., Franco-Trecu, V., Franco-Fraguas, P. & Arim, M. Gape and energy limitation determining a humped relationship between trophic position and body size. Can. J. Fish. Aquat. Sci. 72, 198–205 (2015).
Google Scholar
Taylor, M. A. How tetrapods feed in water: a functional analysis by paradigm. Zool. J. Linn. Soc. 91, 171–195 (1987).
Google Scholar
Werth, A. Feeding in marine mammals in Feeding: form, function, and evolution in tetrapod vertebrates (ed K. Schwenk) 487–526 (Academic Press, 2010).
Hocking, D. P., Salverson, M., Fitzgerald, E. M. G. & Evans, A. R. Australian fur seals (Arctocephalus pusillus doriferus) use raptorial biting and suction feeding when targeting prey in different foraging scenarios. PLoS One 9, e112521 (2014).
Google Scholar
Dalerum, F. & Angerbjörn, A. Resolving temporal variation in vertebrate diets using naturally occurring stable isotopes. Oecologia 144, 647–658 (2005).
Google Scholar
Bearhop, S., Adams, C. E., Waldrons, S., Fuller, R. A. & Macleod, H. Determining trophic niche width: a novel approach using stable isotope analysis. J. Anim. Ecol. 73, 1007–1012 (2004).
Google Scholar
Layman, C. A., Arrington, D. A., Montanä, C. G. & Post, D. M. Can stable isotope ratios provide for community-wide measures of trophic structure?. Ecology 88, 42–48 (2007).
Google Scholar
Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER-Stable Isotope Bayesian Ellipses in R. J. Anim. Ecol. 80, 595–602 (2011).
Google Scholar
Michener, R. H. & Lajtha, K. Stable isotopes in ecology and environmental science. Second edn, (Blackwell publishing, 2007).
Post, D. M. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83, 703–718 (2002).
Google Scholar
Das, K. et al. Marine mammals from northeast Atlantic: relationship between their trophic status as determined by d13C and d15N measurements and their trace metal concentration. Mar. Environ. Res. 56, 349–365 (2003).
Google Scholar
Das, K., Lepoint, G., Leroy, Y. & Bouquegneau, J. M. Marine mammals from the southern North Sea: feeding ecology data from d13C and d15N measurements. Mar. Ecol. Prog. Ser. 263, 287–298 (2003).
Google Scholar
Mèndez-Fernandez, P. et al. Foraging ecology of five toothed whale species in the Northwest Iberian Peninsula, inferred using carbon and nitrogen isotope ratios. J. Exp. Mar. Biol. Ecol. 413, 150–158 (2012).
Google Scholar
Pinela, A. M., Borrell, A., Cardona, L. & Aguilar, A. Stable isotope analysis reveals habitat partitioning among marine mammals off the NW African coast and unique trophic niches for two globally threatened species. Mar. Ecol. Prog. Ser. 416, 295–306 (2010).
Google Scholar
Costa, A. F., Botta, S., Siciliano, S. & Giarrizzo, T. Resource partitioning among stranded aquatic mammals from Amazon and northeastern coast of Brazil revealed through carbon and nitrogen stable isotopes. Sci. Rep. 10, 12897 (2020).
Google Scholar
Bisi, T. L. et al. Trophic relationships and habitat preferences of delphinids from the southeastern Brazilian coast determined by carbon and nitrogen stable isotope composition. PLoS One 8, e82205 (2013).
Google Scholar
Riccialdelli, L., Newsome, S. D., Fogel, M. L. & Goodall, R. N. Isotopic assessment of prey and habitat preferences of a cetacean community in the southwestern South Atlantic Ocean. Mar. Ecol. Prog. Ser. 418, 235–248 (2010).
Google Scholar
Saporiti, F. et al. Resource partitioning among air-breathing marine predators: are body size and mouth diameter the major determinants?. Mar. Ecol. 37, 957–969 (2016).
Google Scholar
Ford, J. K. B. Killer whale Orcinus orca in Encyclopedia of Marine Mammals (eds B. Würsig, J.G.M. Thewissen, & K.M. Kovacs) 531–537 (Academic Press, 2018).
Durban, J. W. & Pitman, R. L. Antarctic killer whales make rapid, round-trip movements to subtropical waters: evidence for physiological maintenance migrations?. Biol. Lett. 8, 274–277 (2011).
Google Scholar
Drago, M. et al. Mouth gape determines the response of marine top predators to long-term fishery-induced changes in food web structure. Sci. Rep. 8, 15759 (2018).
Google Scholar
Drago, M. et al. Isotopic niche partitioning between two apex predators over time. J. Anim. Ecol. 86, 766–780 (2017).
Google Scholar
Bond, A. L. & Hobson, K. A. Reporting stable-isotope ratios in ecology: Recommended terminology, guidelines and best practices. Waterbirds 35, 324–331 (2012).
Google Scholar
Skrzypek, G. Normalization procedures and reference material selection in stable HCNOS isotope analyses: an overview. Anal. Bioanal. Chem. 405, 2815–2823 (2013).
Google Scholar
Newsome, S. D., Clementz, M. T. & Koch, P. L. Using stable isotope biogeochemistry to study marine mammal ecology. Mar. Mamm. Sci. 26, 509–572 (2010).
Google Scholar
Keeling, C. D. The Suess effect: 13Carbon-14Carbon interactions. Environ. Int. 2, 229–300 (1979).
Google Scholar
Verburg, P. The need to correct for the Suess effect in the application of δ13C in sediment of autotrophic Lake Tanganyika, as a productivity proxy in the Anthropocene. J. Paleolimnol. 37, 591–602 (2007).
Google Scholar
Gruber, N. et al. Spatiotemporal patterns of carbon-13 in the global surface oceans and the oceanic Suess effect. Global Biogeochem. Cycles 13, 307–335 (1999).
Google Scholar
Quay, P., Sonnerup, R., Westby, T., Stutsman, J. & McNichol, A. Changes in the 13C/12C of dissolved inorganic carbon in the ocean as a tracer of anthropogenic CO2 uptake. Global Biogeochem. Cycles 17, 1004 (2003).
Google Scholar
Borrell, A., Abad-Oliva, N., Gómez-Campos, E., Giménez, J. & Aguilar, A. Discrimination of stable isotopes in fin whale tissues and application to diet assessment in cetaceans. Rapid Commun. Mass Spectrom. 26, 1596–1602 (2012).
Google Scholar
McMahon, K. W., Hamady, L. L. & Thorrold, S. R. A review of ecogeochemistry approaches to estimating movements of marine animals. Limnol. Oceanogr. 58, 697–714 (2013).
Google Scholar
R Core Team. R: A language and environment for statistical computing, http://www.R-project.org. (2018).
Hobson, K. A. & Clark, R. G. Assessing avian diets using stable isotopes analysis. I: Turnover of 13C in tissues. The Condor 94, 181–188 (1992).
Google Scholar
Hobson, K. A. & Clark, R. G. Assessing avian diets using stable isotopes II: factors influencing diet-tissue fractionation. The Condor 94, 189–197 (1992).
Google Scholar
Casey, M. M. & Post, D. M. The problem of isotopic baseline: Reconstructing the diet and trophic position of fossil animals. Earth Sci. Rev. 106, 131–148 (2011).
Google Scholar
Barnes, C., Seeting, C. J., Jennings, S., Barry, J. T. & Polunin, N. V. C. Effect of temperature and ration size on carbon and nitrogen isotope trophic fractionation. Funct. Ecol. 21, 356–362 (2007).
Google Scholar
Bloomfield, A. L., Elsdon, T. S., Walther, B. D. & Gier, E. J. Temperature and diet affect carbon and nitrogen isotopes of fish muscle: can amino acid nitrogen isotopes explain effects?. J. Exp. Mar. Biol. Ecol. 399, 48–59 (2011).
Google Scholar
Saporiti, F. et al. Latitudinal changes in the structure of marine food webs in the Southwestern Atlantic Ocean. Mar. Ecol. Prog. Ser. 538, 23–34 (2015).
Google Scholar
Wells, R. S. & Scott, M. D. Bottlenose dolphin, Tursiops truncatus, common bottlenose dolphin in Encyclopedia of Marine Mammals (eds B. Würsig, J.G.M. Thewissen, & K.M. Kovacs) 118–125 (Academic Press, 2018).
Natoli, A., Peddemors, V. M. & Hoelzel, A. R. Population structure and speciation in the genus Tursiops based on microsatellite and mitochondrial DNA analyses. J. Evol. Biol. 17, 363–375 (2004).
Google Scholar
Costa, A. P. B., Rosel, P. E., Daura-Jorge, F. G. & Simões-Lopes, P. C. Offshore and coastal common bottlenose dolphins of the western South Atlantic face-to-face: what the skull and the spine can tell us. Mar. Mamm. Sci. 32, 1433–1457 (2016).
Google Scholar
Drago, M. et al. Stable oxygen isotopes reveal habitat use by marine mammals in the Río de la Plata estuary and adjoining Atlantic Ocean. Estuar. Coast. Shelf Sci. 238, 106708 (2020).
Koen, A. M., Pedraza, S. N., Sciavini, A. C. M., Goodall, R. N. & Crespo, E. A. Stomach contents of false killer whales (Pseudorca crassidens) stranded on the coasts of the strait of Magellan, Tierra del Fuego. Mar. Mamm. Sci. 15, 712–724 (1999).
Page, C. E. & Cooper, N. Morphological convergence in ‘river dolphin’ skulls. PeerJ 5, e4090 (2017).
Cohen, J. E., Pimm, S. L., Yodzis, P. & Saldañas, J. Body sizes of animal predators and animal prey in food webs. J. Anim. Ecol. 62, 67–78 (1993).
Google Scholar
Cohen, J. E., Jonsson, T. & Carpenter, S. R. Ecological community description using the food web, species abundance, and body size. Proc. Natl. Acad. Sci. U.S.A. 100, 1781–1786 (2003).
Google Scholar
Warren, P. H. & Lawton, J. H. Invertebrate predator-prey body size relationships: an explanation for upper triangular food webs and patterns in food web structure?. Oecologia 74, 231–235 (1987).
Google Scholar
Kerr, S. R. & Dickie, L. M. The biomass spectrum: a predator-prey theory of aquatic production. (Columbia University Press, 2001).
Leaper, R. & Huxham, M. Size constraints in a real food web: predator, parasite and prey body-size relationships. Oikos 99, 443–456 (2002).
Google Scholar
Memmott, J., Martinez, N. D. & J.E., C. Predators, parasitoids and pathogens: species richness, trophic generality and body sizes in a natural food web. J. Anim. Ecol. 69, 1–15 (2000).
Williams, R. J. & Martinez, N. D. Simple rules yield complex food webs. Nature 404, 180–183 (2000).
Google Scholar
Jennings, S. Size-based analyses of aquatic food webs in Aquatic food webs: an ecosystem approach (eds A. Belgrano, U.M. Scharler, J. Dunne, & R.E. Ulanowicz) 86–97 (Oxford University Press, 2005).
Layman, C. A., Winemiller, K. O., Arrington, D. A. & Jepsen, D. B. Body size and trophic position in a diverse tropical food web. Ecology 86, 2530–2535 (2005).
Google Scholar
Jeglinski, J., Goetz, K. T., Werner, C., Costa, D. P. & Trillmich, F. Same size – same niche? Foraging niche separation between sympatric juvenile Galapagos sea lions and adult Galapagos fur seals. J. Anim. Ecol. 82, 694–706 (2013).
Google Scholar
Akin, S. & Winemiller, K. O. Body size and trophic position in a temperate estuarine food web. Acta Oecol. 33, 144–153 (2008).
Google Scholar
Romanuk, T. N., Hayward, A. & Hutchings, J. A. Trophic level scales positively with body size in fishes. Glob. Ecol. Biogeogr. 20, 231–240 (2011).
Google Scholar
Madigan, D. J. et al. Stable isotope analysis challenges wasp-waist food web assumptions in an upwelling pelagic ecosystem. Sci. Rep. 2, 654 (2012).
Google Scholar
Source: Ecology - nature.com