If an endpoint of continued circulation (endemicity rather than eradication) seems likely, this still leaves us with questions about the range of outbreak sizes, their intensity and seasonality. Surprisingly, some basic epidemiological parameters for predicting these dynamical features are still uncertain. For example, R0, the reproductive number, which captures the infectiousness of the pathogen, is typically measured from the growth of the epidemic and is harder to estimate once non-pharmaceutical interventions (NPIs) are in place. Similarly, changes to R0 for evolved SARS- CoV-2 variants are difficult to ascertain given simultaneous changes to behaviour and interventions. It is not yet clear whether there is an evolutionary limit to strain infectiousness. To date, structural changes to the SARS-CoV-2 spike furin cleavage site7 as well as enhanced binding of the receptor binding domain to the human ACE2 receptor8 have been associated with enhanced transmissibility in variant strains, but in the longer term, transmission increases may saturate and viral evolution may modulate other aspects of disease transmission including host susceptibility. Nevertheless, any present or future changes to R0 will affect long-term epidemic dynamics, including the intensity of outbreaks and the age-structure of infections.
The transmission of many respiratory pathogens varies seasonally, driven either by climatic factors or seasonal changes in behaviour such as schooling. The role of climate in driving transmission of SARS-CoV-2 is currently unclear: high susceptibility during the early pandemic likely limited any climate effect9, and statistical analyses of the climate-SARS-CoV-2 link have been confounded by trends in the data and regional differences in reporting and control measures. This has not been helped by the relatively short case time series (that is, just over a year’s worth of data) compared to typical climate–disease studies that look for climate links over many seasons. An alternative line of evidence comes from the four endemic coronaviruses, which exhibit seasonal wintertime outbreaks. It is possible that SARS-CoV-2 will follow suit. Disentangling the climate drivers of SARS-CoV-2 will become easier over time as both longer time series are available, and susceptibility declines9.
A further question is the extent to which SARS-CoV-2 endemic dynamics will be affected by interactions with other circulating pathogens, including the endemic coronaviruses. Both modelling and laboratory work implies a degree of cross-immunity between coronaviruses10,11,12. The NPIs put in place to limit the spread of SARS-CoV-2 have also limited the circulation of many other pathogens, such that infection interactions have not been observed in current case trajectories13. However, as NPIs are relaxed, signatures of cross-species interactions will likely become increasingly visible.
Beyond cross-immunity with other pathogens, the longitudinal trajectory of immunity, as depicted in Fig. 1, will play a crucial role in determining SARS-CoV-2 endemic dynamics14. For immunizing infections, susceptibility is driven by birth rates, and infections may be concentrated in younger age groups. For infections with waning immunity or antigenic evolution, susceptibility is driven by the rate at which immunity wanes or the rate the pathogen evolves as well as characteristics of secondary infections. The disease dynamics of pathogens with high rates of antigenic evolution are particularly hard to predict: evolved strains may have variable transmission rates and manifest variable immune responses. An analogy can be made with influenza, where the size and intensity of the seasonal influenza peak is typically very difficult to forecast15.
The future course of SARS-CoV-2 remains uncertain. The next few months to a year represents a critical time where we will begin to develop an understanding of key parameters, such as the strength and duration of vaccinal and natural immunity, the seasonality of transmission and the possible interaction of SARS-CoV-2 with other circulating pathogens. In combination, these parameters will allow improved prediction of both long-term SARS-CoV-2 epidemic dynamics, as well as the likelihood of elimination and eradication. An area of particular focus will be the rate of antigenic evolution and the extent to which vaccines remain protective against evolved strains. In all scenarios, rapid and equitable distribution of vaccines presents the greatest hope for minimizing future severe outbreaks.
Source: Ecology - nature.com