in

The rise and fall of proboscidean ecological diversity

  • 1.

    Surovell, T., Waguespack, N. & Brantingham, P. J. Global archaeological evidence for proboscidean overkill. Proc. Natl Acad. Sci. USA 102, 6231–6236 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 2.

    Smith, F. A., Smith, R. E. E., Lyons, S. K. & Payne, J. L. Body size downgrading of mammals over the late Quaternary. Science 360, 310–313 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 3.

    Faith, J. T., Rowan, J., Du, A. & Barr, W. A. The uncertain case for human-driven extinctions prior to Homo sapiens. Quat. Res. 96, 88–104 (2020).

    Article 

    Google Scholar 

  • 4.

    Cuvier, G. Mémoires sur les Espèces d’Éléphants Vivants et Fossiles. Mémoires de l’Institut des Sciences et Arts 2, 1–22 (1800); https://www.biodiversitylibrary.org/page/16303001#page/175/mode/1up

  • 5.

    Osborn, H. F. The ancestral tree of the Proboscidea. Discovery, evolution, migration and extinction over a 50,000,000 year period. Proc. Natl Acad. Sci. USA 21, 404–412 (1935).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 6.

    International Union for Conservation of Nature. The IUCN Red List of Threatened Species Version 2021-1 (IUCN, 2021); https://www.iucnredlist.org

  • 7.

    Maglio, V. J. Origin and evolution of the Elephantidae. Trans. Am. Philos. Soc. 63, 1–149 (1973).

    Article 

    Google Scholar 

  • 8.

    Zhang, H., Wang, Y., Janis, C. M., Goodall, R. H. & Purnell, M. A. An examination of feeding ecology in Pleistocene proboscideans from southern China (Sinomastodon, Stegodon, Elephas), by means of dental microwear texture analysis. Quat. Int. 445, 60–70 (2017).

    Article 

    Google Scholar 

  • 9.

    Saegusa, H. Stegodontidae and Anancus: keys to understanding dental evolution in Elephantidae. Quat. Sci. Rev. 231, 106176 (2020).

    Article 

    Google Scholar 

  • 10.

    Hempson, G. P., Archibald, S. & Bond, W. J. A continent-wide assessment of the form and intensity of large mammal herbivory in Africa. Science 350, 1056–1061 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 11.

    Silvestro, D., Salamin, N., Antonelli, A. & Meyer, X. Improved estimation of macroevolutionary rates from fossil data using a Bayesian framework. Paleobiology 45, 546–570 (2019).

    Article 

    Google Scholar 

  • 12.

    Clavel, J., Escarguel, G. & Merceron, G. mvMORPH: an R package for fitting multivariate evolutionary models to morphometric data. Methods Ecol. Evol. 6, 1311–1319 (2015).

    Article 

    Google Scholar 

  • 13.

    Cantalapiedra, J. L., Hernández Fernández, M., Azanza, B. & Morales, J. Congruent phylogenetic and fossil signatures of mammalian diversification dynamics driven by Tertiary abiotic change. Evolution 69, 2941–2953 (2015).

    PubMed 
    Article 

    Google Scholar 

  • 14.

    Silvestro, D., Antonelli, A., Salamin, N. & Quental, T. B. The role of clade competition in the diversification of North American canids. Proc. Natl Acad. Sci. USA 112, 8684–8689 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 15.

    Sepkoski, J. J. A kinetic model of Phanerozoic taxonomic diversity I. Analysis of marine orders. Paleobiology 4, 223–251 (1978).

    Article 

    Google Scholar 

  • 16.

    Tassy, P. in European Neogene Mammal Chronology (eds Lindsay, E. H. et al.) 237–252 (Plenus Press, 1989).

  • 17.

    van der Made, J. in Elefantentreich: eine Fossilwelt in Europa (ed. Meller, H.) 340–360 (Landesamt für Denkmalpflege und Archäologie Sachsen-Anhalt-Landesmuseum für Vorgeschichte, 2010).

  • 18.

    Saarinen, J. J. et al. Patterns of maximum body size evolution in Cenozoic land mammals: eco-evolutionary processes and abiotic forcing. Proc. Biol. Sci. 281, 20132049 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Fortelius, M. et al. Evolution of Neogene mammals in Eurasia: environmental forcing and biotic interactions. Annu. Rev. Earth Planet Sci. 42, 579–604 (2014).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Marshall, C. R. & Quental, T. B. The uncertain role of diversity dependence in species diversification and the need to incorporate time-varying carrying capacities. Philos. Trans. R. Soc. Lond. B 371, 20150217 (2016).

    Article 
    CAS 

    Google Scholar 

  • 21.

    Vrba, E. S. Evolution, species and fossils: how does life evolve? S. Afr. J. Sci. 76, 61–84 (1980).

    Google Scholar 

  • 22.

    Cantalapiedra, J. L., Prado, J. L., Hernández Fernández, M. & Alberdi, M. T. Decoupled ecomorphological evolution and diversification in Neogene-Quaternary horses. Science 355, 627–630 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 23.

    Calandra, I., Göhlich, U. B. & Merceron, G. How could sympatric megaherbivores coexist? Example of niche partitioning within a proboscidean community from the Miocene of Europe. Naturwissenschaften 95, 831–838 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 24.

    Sanders, W. J. Proboscidea from Kanapoi, Kenya. J. Hum. Evol. 140, 102547 (2020).

    PubMed 
    Article 

    Google Scholar 

  • 25.

    Wang, S. et al. Evolution of Protanancus (Proboscidea, Mammalia) in East Asia. J. Vertebr. Paleontol. 35, e881830 (2015).

    Article 

    Google Scholar 

  • 26.

    Lister, A. M. The role of behaviour in adaptive morphological evolution of African proboscideans. Nature 500, 331–334 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 27.

    Lister, A. M., Sher, A. V., van Essen, H. & Wei, G. The pattern and process of mammoth evolution in Eurasia. Quat. Int. 126, 49–64 (2005).

    Article 

    Google Scholar 

  • 28.

    Wei, G. et al. New materials of the steppe mammoth, Mammuthus trogontherii, with discussion on the origin and evolutionary patterns of mammoths. Sci. China Earth Sci. 53, 956–963 (2010).

    Article 

    Google Scholar 

  • 29.

    Stanley, S. M. Macroevolution: Patterns and Processes (W. H. Freeman and Company, 1979).

  • 30.

    Edwards, E. J. et al. The origins of C4 grasslands: integrating evolutionary and ecosystem science. Science 328, 587–591 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 31.

    Faith, J. T., Rowan, J., Du, A. & Koch, P. L. Plio-Pleistocene decline of African megaherbivores: no evidence for ancient hominin impacts. Science 362, 938–941 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 32.

    Kaya, F. et al. The rise and fall of the Old World savannah fauna and the origins of the African savannah biome. Nat. Ecol. Evol. 2, 241–246 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 33.

    Saarinen, J. & Lister, A. M. Dental mesowear reflects local vegetation and niche separation in Pleistocene proboscideans from Britain. J. Quat. Sci. 31, 799–808 (2016).

    Article 

    Google Scholar 

  • 34.

    Rivals, F., Semprebon, G. M. & Lister, A. M. Feeding traits and dietary variation in Pleistocene proboscideans: a tooth microwear review. Quat. Sci. Rev. 219, 145–153 (2019).

    Article 

    Google Scholar 

  • 35.

    Vrba, E. S. in Living Fossils (eds Eldredge, N. & Stanley, S. M.) 62–79 (Springer, 1984).

  • 36.

    Herrera‐Flores, J. A., Stubbs, T. L. & Benton, M. J. Macroevolutionary patterns in Rhynchocephalia: is the tuatara (Sphenodon punctatus) a living fossil? Palaeontology 60, 319–328 (2017).

    Article 

    Google Scholar 

  • 37.

    Todd, N. E. Trends in proboscidean diversity in the African Cenozoic. J. Mamm. Evol. 13, 1–10 (2006).

    Article 

    Google Scholar 

  • 38.

    Rivals, F., Mol, D., Lacombat, F., Lister, A. M. & Semprebon, G. M. Resource partitioning and niche separation between mammoths (Mammuthus rumanus and Mammuthus meridionalis) and gomphotheres (Anancus arvernensis) in the Early Pleistocene of Europe. Quat. Int. 379, 164–170 (2015).

    Article 

    Google Scholar 

  • 39.

    Sanders, W. J. & Haile-Selassie, Y. A new assemblage of mid-Pliocene proboscideans from the Woranso-Mille area, Afar region, Ethiopia: taxonomic, evolutionary, and paleoecological considerations. J. Mamm. Evol. 19, 105–128 (2012).

    Article 

    Google Scholar 

  • 40.

    van der Geer, A. A. E. et al. The effect of area and isolation on insular dwarf proboscideans. J. Biogeogr. 43, 1656–1666 (2016).

    Article 

    Google Scholar 

  • 41.

    Westerhold, T. et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science 369, 1383–1387 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 42.

    Vrba, E. S. in African Biogeography, Climate Change, and Hominid Evolution (eds Bromage, T. G. & Shrenk, F.) 19–39 (Oxford Univ. Press, 1999).

  • 43.

    Stuart, A. J. Late Quaternary megafaunal extinctions on the continents: a short review. Geol. J. 50, 338–363 (2015).

    Article 

    Google Scholar 

  • 44.

    Jukar, A. M., Lyons, S. K., Wagner, P. J. & Uhen, M. D. Late Quaternary extinctions in the Indian subcontinent. Palaeogeogr. Palaeoclimatol. Palaeoecol. 562, 110137 (2021).

    Article 

    Google Scholar 

  • 45.

    Raup, D. M. Extinction: Bad Genes or Bad Luck? (Norton, 1991).

  • 46.

    Cantalapiedra, J. L. et al. Conserving evolutionary history does not result in greater diversity over geological time scales. Proc. Biol. Sci. 286, 20182896 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 47.

    Ronquist, F. et al. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 48.

    Hublin, J.-J. et al. New fossils from Jebel Irhoud, Morocco and the pan-African origin of Homo sapiens. Nature 546, 289–292 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 49.

    O’Connell, J. F. et al. When did Homo sapiens first reach Southeast Asia and Sahul? Proc. Natl Acad. Sci. USA 115, 8482–8490 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 50.

    Ardelean, C. F. et al. Evidence of human occupation in Mexico around the Last Glacial Maximum. Nature 584, 87–92 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 51.

    Paradis, E. Analysis of Phylogenetics and Evolution with R (Springer, 2012).

  • 52.

    Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

    Article 

    Google Scholar 

  • 53.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article 

    Google Scholar 

  • 54.

    MacLatchy, L. M., Desilva, J., Sanders, W. J. & Wood, B. in Cenozoic Mammals of Africa (eds Werdelin, L. & Sanders, W. J.) 471–545 (Univ. California Press, 2010).


  • Source: Ecology - nature.com

    Beyond coronavirus: the virus discoveries transforming biology

    Genetic and phylogenetic analysis of dissimilatory iodate-reducing bacteria identifies potential niches across the world’s oceans