in

The rise of angiosperms strengthened fire feedbacks and improved the regulation of atmospheric oxygen

[adace-ad id="91168"]
  • 1.

    Bond, W. J., Woodward, F. I. & Midgley, G. F. The global distribution of ecosystems in a world without fire. N. Phytol. 165, 525–538 (2005).

    CAS  Article  Google Scholar 

  • 2.

    Krawchuk, M. A., Moritz, M. A., Parisien, M.-A., Van Dorn, J. & Hayhoe, K. Global pyrogeography: the current and future distribution of wildfire. PLoS ONE https://doi.org/10.1371/journal.pone.0005102 (2009).

  • 3.

    Pausas, J. G. & Keeley, J. E. A burning story: the role of fire in the history of life. Bio. Sci. 59, 593–601 (2009).

    Google Scholar 

  • 4.

    Pausas, J. G. & Ribeiro, E. The global fire-productivity relationship. Glob. Ecol. Biogeog. 22, 728–736 (2013).

    Article  Google Scholar 

  • 5.

    Archibald, S. et al. Biological and geophysical feedbacks with fire in the Earth system. Environ. Res. Lett. 13, 033003 (2018).

    ADS  Article  Google Scholar 

  • 6.

    Pausas, J. G., Bradstock, R. A., Keith, D. A. & Keeley, J. E. Plant functional traits in relation to fire in crown-fire ecosystems. Ecology 85, 1085–1100 (2004).

    Article  Google Scholar 

  • 7.

    Lenton, T. M. in Fire Phenomena and the Earth System: An Interdisciplinary Guide to Fire Science (ed Belcher, C. M.) 289–309 (John Wiley and Sons, Chichester, UK, 2013).

  • 8.

    van der Werf, G. R. et al. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires 1997−2009. Atmos. Chem. Phys. Discuss. 10, 11707–11735 (2010).

    ADS  Article  CAS  Google Scholar 

  • 9.

    Santín, C. et al. Towards a global assessment of pyrogenic carbon from vegetation fires Glob. Chang. Biol. 22, 76–91 (2016).

    Article  Google Scholar 

  • 10.

    Bond, W. J. & Keeley, J. E. Fire as a global herbivore: the ecology and evolution of flammable ecosystems. Trends Ecol. Evol. 20, 387–394 (2005).

    PubMed  Article  Google Scholar 

  • 11.

    Belcher, C. M., Collinson, M. E. & Scott, A. C. in C. M. Belcher (ed) Fire Phenomena and the Earth System: an Interdisciplinary Guide to Fire Science 229–249 (Wiley, Oxford, 2016).

  • 12.

    Keeley, J. E., Pausas, J. G., Rundel, P. W., Bond, W. J. & Bradstock, R. A. Fire as an evolutionary pressure shaping plant traits. Trends Plant Sci. 16, 406–411 (2011).

    CAS  PubMed  Article  Google Scholar 

  • 13.

    He, T., Pausas, J. G., Belcher, C. M., Schwilk, D. W. & Lamont, B. B. Fire-adapted traits of Pinus arose in the fiery Cretaceous. N. Phytol. 194, 751–759 (2012).

    Article  Google Scholar 

  • 14.

    Belcher, C. M. & Hudspith, V. A. Changes to cretaceous surface fire behaviour influenced the spread of the early angiosperms. N. Phytol. 213, 1521–1532 (2016).

    Article  CAS  Google Scholar 

  • 15.

    Bond, W. J. & Scott, A. C. Fire and the spread of flowering plants in the Cretaceous. N. Phytol. 188, 1137–1150 (2010).

    Article  Google Scholar 

  • 16.

    Keeley, J. E. & Rundel, P. W. Fire and the Miocene expansion of C4 grasslands. Ecol. Lett. 8, 683–690 (2005).

    Article  Google Scholar 

  • 17.

    Belcher, C. M. & McElwain, J. C. Limits for combustion in low O2 redefine paleoatmospheric predictions for the Mesozoic. Science 321, 1197–1200 (2008).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 18.

    Belcher, C. M., Yearsley, J. M., Hadden, R. M., McElwain, J. C. & Rein, G. Baseline intrinsic flammability of Earth’s ecosystems estimated from paleoatmospheric oxygen over the past 350 million years. Proc. Natl Acad. Sci. USA 107, 22448–22453 (2010).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 19.

    Holland, H. D. The oxygenation of the atmosphere and oceans. Philos. Trans. Roy. Soc. B 361, 903–915 (2006).

    CAS  Article  Google Scholar 

  • 20.

    Goldblatt, C., Lenton, T. M. & Watson, A. J. Bistability of atmospheric oxygen and the Great Oxidation. Nature 443, 683–686 (2006).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 21.

    Alcott, L. J., Mills, B. J. W. & Poulton, S. W. Stepwise Earth oxygenation is an inherent property of global biogeochemical cycling. Science 366, 1333–1337 (2019).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 22.

    Lenton, T. M. & Watson, A. J. Biotic enhancement of weathering, atmospheric oxygen and carbon dioxide in the Neoproterozoic. Geophys. Res. Lett. 31, L05202 (2004).

    ADS  Article  CAS  Google Scholar 

  • 23.

    Lenton, T. M. et al. Earliest land plants created modern levels of atmospheric oxygen. Proc. Natl Acad. Sci. USA 113, 9704–9709 (2016).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 24.

    Lenton, T. M. & Watson, A. J. Redfield revisited 2. What regulates the oxygen content of the atmosphere? Glob. Biogeochem. Cycles, B 14, 249–268 (2000).

    ADS  CAS  Article  Google Scholar 

  • 25.

    Watson, A. J. Consequences for the biosphere of forest and grassland fires. PhD thesis (University of Reading, Reading, UK, 1978).

  • 26.

    Kump, L. R. Terrestrial feedback in atmospheric oxygen regulation by fire and phosphorus. Nature 335, 152–154 (1988).

    ADS  CAS  Article  Google Scholar 

  • 27.

    Burdige, D. J. Burial of terrestrial organic matter in marine sediments: a reassessment. Glob. Biogeochem. Cyc. 19, (2005).

  • 28.

    Van Cappellen, P. & Ingall, E. D. Redox stabilisation of the atmosphere and oceans by phosphorus-limited marine productivity. Science 271, 493–496 (1996).

    ADS  PubMed  Article  Google Scholar 

  • 29.

    Kump, L. R. & Mackenzie, F. T. Regulation of atmospheric O2: feedback in the microbial feedbag. Science 271, 459–460 (1996).

    ADS  CAS  Article  Google Scholar 

  • 30.

    Canfield, D. E. Sulfur isotopes in coal constrain the evolution of the Phaneroiz sulphur cycle. Proc. Natl Acad. Sci. USA 110, 8443–8446 (2013).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 31.

    Walker, J. C. G. Stability of atmospheric oxygen. Am. J. Sci. 274, 193–214 (1974).

    ADS  CAS  Article  Google Scholar 

  • 32.

    Lasaga, A. C. & Ohmoto, H. The oxygen geochemical cycle: dynamics and stability. Geochim. Cosmochim. Acta 66, 361–381 (2002).

    ADS  CAS  Article  Google Scholar 

  • 33.

    Holland, H. D. The Chemical Evolution of the Atmosphere and Oceans: Princeton Series in Geochemistry (Princeton University Press, Princeton, 1984).

  • 34.

    Berner, R. A. Atmospheric oxygen over Phanerozoic time. Proc. Natl Acad. Sci. USA 96, 10955–10957 (1999).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 35.

    Lovelock, J. Gaia: a new look at life on Earth (Oxford University Press, New York, 1979).

  • 36.

    Mahowald, N. M. et al. Impact of biomass burning emissions and land use change on Amazonian atmospheric cycling and deposition of phosphorus. Glob. Biogeochem. Cycles 19, 1–15 (2005).

    Google Scholar 

  • 37.

    Bergman, N. M., Lenton, T. M. & Watson, A. J. COPSE: a new model of biogeochemical cycling over Phanerozoic time. Am. J. Sci. 304, 397–437 (2004).

    ADS  CAS  Article  Google Scholar 

  • 38.

    Robinson, J. M. Phanerozoic O2 variation, fire, and terrestrial ecology. Palaeogeogr. Palaeoclimatol. Palaeoecol. 75, 223–240 (1989).

    Article  Google Scholar 

  • 39.

    Midgley, J. J. & Bond, W. J. in Fire Phenomena and the Earth System: An Interdisciplinary Guide to Fire Science (ed Belcher C. M.) 125–134 (Chichester, UK: John Wiley and Sons, 2013).

  • 40.

    Lenton, T. M., Daines, S. J. & Mills, B. J. W. COPSE reloaded: an improved model of biogeochemical cycling over Phanerozoic time. Earth Sci. Rev. 178, 1–28 (2018).

    ADS  CAS  Article  Google Scholar 

  • 41.

    Mills, B. J. W. et al. Modeliing the long-term carbon cycle, atmospheric CO2, and Earth surface temperature from late Neoproterozoic to present day. Gond. Res. 67, 172–186 (2019).

    ADS  CAS  Article  Google Scholar 

  • 42.

    Berner, R. A. Biogeochemical cycles of carbon and sulphur and their effect on atmospheric oxygen over Phanerozoic time. Glob. Planet. Chang. 75, 97–122 (1989).

    ADS  Article  Google Scholar 

  • 43.

    Berner, R. A. Modeling atmospheric O2 over Phaneroic time. Geochim. Cosmochim. Acta 65, 685–694 (2001).

    ADS  CAS  Article  Google Scholar 

  • 44.

    Lenton, T. M. The role of land plants, phosphorus weathering and fire in the rise and regulation of atmospheric oxygen. Glob., Chang. Biol. 7, 613–629 (2001).

    ADS  Article  Google Scholar 

  • 45.

    Berner, R. A. Phanerozoic atmospheric oxygen: new results using the GEOCARBSULF model. Am. J. Sci. 289, 333–361 (2009).

    ADS  Article  Google Scholar 

  • 46.

    Berner, R. A. & Canfield, D. E. A new model for atmospheric oxygen over Phanerozoic time. Am. J. Sci. 289, 333–361 (1989).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 47.

    Glasspool, I. J. & Scott, A. C. Phanerozoic concentrations of atmospheric oxygen reconstructed from sedimentary charcoal. Nat. Geosci. 3, 627–630 (2010).

    ADS  CAS  Article  Google Scholar 

  • 48.

    Mills, B. J. W., Belcher, C. M., Lenton, T. M. & Newton, R. J. A modeling case for high atmospheric oxygen concentrations during the Mesozoic and Cenozoic. Geology 44, 1023–1026 (2016).

    ADS  CAS  Article  Google Scholar 

  • 49.

    Crane, P. R. & lidgard, S. Angiosperm diversification and paleolatitudinal gradients in Cretaceous floristic diversity. Science 246, 675–678 (1989).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 50.

    Lidgard, S. & Crane, P. R. Angiosperm diversification and Cretaceous floristic trends – a comparison of palynofloras and leaf floras. Paleobiology 16, 77–93 (1990).

    Article  Google Scholar 

  • 51.

    Friis, E. M., Crane, P. R. & Pederson, J. R. Early Flowers and Angiosperm Evolution (Cambridge University Press, New York, 2011).

  • 52.

    Bond, W. J. The tortoise and the hare: ecology of angiosperm dominance and gymnosperm persistence. Biol. J. Linn. Soc. 36, 227–249 (1989).

    Article  Google Scholar 

  • 53.

    Brodribb, T. J., Feild, T. S. & Jordan, G. J. Leaf maximum photosynthetic rate and venation are linked by hydraulics. Plant Physiol. 144, 1890–1898 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 54.

    Field, T. S. et al. Fossil evidence for Cretaceous escalation un angiosperm leaf vein evolution. Proc. Natl Acad. Sci. USA 108, 863–8366 (2011).

    Google Scholar 

  • 55.

    Field, T. S., Arens, N. C., Doyle, J. A. & Dawson, T. E. Dark and disturbed: a new image of early angiosperm ecology. Paleobiology 30, 82–107 (2004).

    Article  Google Scholar 

  • 56.

    Mills, B. et al. Changing tectonic controls on the long-term carbon cycle from Mesozoic to present. Geochem. Geophys. Geosyst. 15, 4866–4884 (2014).

    ADS  CAS  Article  Google Scholar 

  • 57.

    Schneider, H. et al. Ferns diversified in the shadow of angiosperms. Nature 428, 553–557 (2004).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 58.

    Brodribb, T. J. & Field, T. S. Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversification. Ecol. Lett. 13, 175–183 (2010).

    PubMed  Article  Google Scholar 

  • 59.

    Royer, D. L., Miller, I. M., Peppe, D. J. & Hickey, L. J. Leaf economic traits from fossils support a weedy habit for early angiosperms. Am. J. Bot. 97, 438–445 (2010).

    PubMed  Article  Google Scholar 

  • 60.

    Stevens P. F. Angiosperm phylogeny website. Version 12, [Online]. http://www.mobot.org/MOBOT/research/APweb/ (2012).

  • 61.

    Schwilk, D. W. & Ackerly, D. D. Flammability and serotiny as strategies: correlated evolution in pines. Oikos 94, 326–336 (2001).

    Article  Google Scholar 

  • 62.

    Lamont, B. B. & Downes, K. S. Fire-stimulated flowering among resprouters and geophytes in Australia and South Africa. Pl Ecol. 212, 2111–2125 (2011).

    Article  Google Scholar 

  • 63.

    Janssen, T. & Bremer, K. The age of major monocot groups inferred from 800+rbcL sequences. Bot. J. Linn. Soc. 146, 385–398 (2004).

    Article  Google Scholar 

  • 64.

    Krassilov, V. & Voynets, Y. Weedy Albian angiosperms. Acta Palaeobot. 48, 151–169 (2008).

    Google Scholar 

  • 65.

    Lamont, B. B. & He, T. Fire adapted Gondanan angiosperm floras evolved in the Cretaceous. Bmc. Evol. Biol. 12, 223 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  • 66.

    Bowman, D. M. J. S., French, B. J. & Prior, L. D. Have plants evolved to self-immolate? Front. Plant. Sci. https://doi.org/10.3389/fpls.2014.00590 (2014).

  • 67.

    Crisp, M. D., Burrows, G. E., Cook, l. G., Thornhill, A. H. & Bowman, D. M. J. S. Flammable biomes dominated by eucalypts originated at the Cretaceous-Palaeogene boundary. Nat. Commun 2, 1–8 (2011).

    Article  CAS  Google Scholar 

  • 68.

    He, T., Lamont, B. B. & Downes, K. S. Banksia born to burn. N. Phyt. 191, 184–196 (2011).

    Article  Google Scholar 

  • 69.

    Watson, A. J. & Lovelock, J. E. in Fire Phenomena and the Earth System: An Interdisciplinary Guide to Fire Science (ed Belcher C. M.) 273–287 (John Wiley and Sons, Chichester, UK, 2013).

  • 70.

    Tiffney, B. H. Seed size, dispersal syndromes, and the rise of the angiosperms: evidence and hypothesis. Ann. Miss. Bot. Gard. 71, 551–576 (1984).

    Article  Google Scholar 

  • 71.

    Wheeler, E. A. & Baas, P. A survey of the fossil record for dicotlydonous wood and its significant for evolutionary and ecological wood anatomy. Int. Assoc. Wood. Anatom. Bull. 12, 271–332 (1991).

    Google Scholar 

  • 72.

    Wing, S. L. & Boucher, L. Ecological aspects of the Cretaceous flowering plant radiation. Ann. Rev. Earth Plan. Sci. 26, 379–421 (1998).

    ADS  CAS  Article  Google Scholar 

  • 73.

    Johnson, K. R. & Ellis, B. A tropical rainforest in Colorado, 1.4 million years after the Cretaceous-Tertiary boundary. Science 296, 2379–2383 (2002).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 74.

    Spicer, R. A., McA, Rees, P. & Chapman, J. L. Cretaceous phytogeography and climate signals. Roy. Soc. Proc. B 341, 277–286 (1993).

    Google Scholar 

  • 75.

    Beerling, D. J. & Woodward, F. I. Vegetation and the Terrestrial Carbon Cycle: Modelling the First 400 Million Years. (Cambridge, Cambridge and New York, 2001).

  • 76.

    Bond, W. J. & Midgley, J. J. Fire and the angiosperm revolutions. Int. J. Plant Sci. 173, 1–16 (2012).

    Article  Google Scholar 

  • 77.

    Wing, S. L. et al. Late Paleocene fossils from the Cerrejón formation, Colombia, are the earliest record of Neotropical rainforest. Proc. Natl Acad. Sci. USA 106, 18627–18632.

  • 78.

    Boyce, C. K., Brodribb, T., Feild, T. S. & Zweiniecki, M. J. Angiosperm leaf vein evolution was physiologically and environmentally transformative. Proc. Roy. Soc. B 276, 1771–1776 (2009).

    Article  Google Scholar 

  • 79.

    Balch, J. K. and five others. Human-started wildfires expand the fire niche across the United States. Proc. Natl Acad. Sci. USA 114, 2946–2951 (2017).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 80.

    Donovan, G. H. & Brown, T. C. Be careful what you wish for: The legacy of Smokey Bear. Front. Ecol. Environ. 5, 73–79 (2007).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Could lab-grown plant tissue ease the environmental toll of logging and agriculture?

    How to get more electric cars on the road