Yamauchi, A., Ikegawa, Y., Ohgushi, T. & Namba, T. Density regulation of co-occurring herbivores via two indirect effects mediated by biomass and non-specific induced plant defenses. Thyroid Res. https://doi.org/10.1007/s12080-020-00479-2 (2020).
Google Scholar
Wootton, J. T. Indirect effects in complex ecosystems: recent progress and future challenges. J. Sea Res. 48, 157–172. https://doi.org/10.1016/S1385-1101(02)00149-1 (2002).
Google Scholar
Wootton, J. T. The nature and consequences of indirect effects in ecological communities. Ann. Rev. Ecol. Syst. 25, 443–466. https://doi.org/10.1146/annurev.es.25.110194.002303 (1994).
Google Scholar
Comeault, A. A. & Matute, D. R. Temperature-dependent competitive outcomes between the fruit flies Drosophila santomea and Drosophila yakuba. Am. Nat. 197, 312–323. https://doi.org/10.1086/712781 (2021).
Google Scholar
Darwin, C. On the Origin of Species by Means of Natural Selection or the Preservation of Favoured Races in the Struggle for Life (Murray, 1859).
Kankaanpää, T. et al. Parasitoids indicate major climate-induced shifts in arctic communities. Global Chang. Biol. https://doi.org/10.1111/gcb.15297 (2020).
Google Scholar
Nagelkerken, I., Goldenberg, S. U., Ferreira, C. M., Ullah, H. & Connell, S. D. Trophic pyramids reorganize when food web architecture fails to adjust to ocean change. Science 369, 829–832. https://doi.org/10.1126/science.aax0621 (2020).
Google Scholar
Kaur, T. & Dutta, P. S. Persistence and stability of interacting species in response to climate warming: the role of trophic structure. Thyroid Res. https://doi.org/10.1007/s12080-020-00456-9 (2020).
Google Scholar
Han, P. et al. Global change-driven modulation of bottom–up forces and cascading effects on biocontrol services. Curr. Opin. Insect Sci. 35, 27–33. https://doi.org/10.1016/j.cois.2019.05.005 (2019).
Google Scholar
Waring, G. L. & Cobb, N. S. in Insect-Plant Interactions, Vol. 4 (ed. Bernays, E. A.) 167–226 (CRC Press, 1992).
Zavala, J. A., Gog, L. & Giacometti, R. Anthropogenic increase in carbon dioxide modifies plant-insect interactions. Ann. Appl. Biol. https://doi.org/10.1111/aab.12319 (2016).
Google Scholar
Bezemer, T. M. & Jones, T. H. Plant-insect herbivore interactions in elevated atmospheric CO2: quantitative analyses and guild effects. Oikos 82, 212. https://doi.org/10.2307/3546961 (1998).
Google Scholar
Navarro, E. C., Lam, S. K. & Trebicki, P. Elevated carbon dioxide and nitrogen impact wheat and its aphid pest. Front. Plant Sci. https://doi.org/10.3389/fpls.2020.605337 (2020).
Google Scholar
Moreno-Delafuente, A., Viñuela, E., Fereres, A., Medina, P. & Trębicki, P. Simultaneous increase in CO2 and temperature alters wheat growth and aphid performance differently depending on virus infection. Insects 11, 459. https://doi.org/10.3390/insects11080459 (2020).
Google Scholar
Shiferaw, B. et al. Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Sec. 5, 291–317. https://doi.org/10.1007/s12571-013-0263-y (2013).
Google Scholar
Minks, A. K. & Harrewijn, P. Aphids. Their Biology, Natural Enemies and Control Vol. A (Elsevier, 1987).
Trebicki, P., Dader, B., Vassiliadis, S. & Fereres, A. Insect-plant-pathogen interactions as shaped by future climate: effects on biology, distribution, and implications for agriculture. Insect Sci. 24, 975–989. https://doi.org/10.1111/1744-7917.12531 (2017).
Google Scholar
Aradottir, G. I. & Crespo-Herrera, L. Host plant resistance in wheat to barley yellow dwarf viruses and their aphid vectors: a review. Curr. Opin. Insect Sci. https://doi.org/10.1016/j.cois.2021.01.002 (2021).
Google Scholar
Yin, W. et al. Microhabitat separation between the pest aphids Rhopalosiphum padi and Sitobion avenae: food resource or microclimate selection?. J. Pest. Sci. https://doi.org/10.1007/s10340-020-01298-4 (2020).
Google Scholar
Noble, D. in Perspectives on Organisms. Biological Time, Symmetries and Singularities Lecture Notes in Morphogenesis (eds. Longo, G. & Montévil, M.) VII–X (Springer, 2014).
Sadras, V. O. Effective phenotyping applications require matching trait and platform and more attention to theory. Front. Plant Sci. https://doi.org/10.3389/fpls.2019.01339 (2019).
Google Scholar
West-Eberhard, M. J. Developmental Plasticity and Evolution (Oxford University Press, 2003).
Google Scholar
Sadras, V. O. et al. Aphid resistance: an overlooked ecological dimension of nonstructural carbohydrates in cereals. Front. Plant Sci. 11, 937. https://doi.org/10.3389/fpls.2020.00937 (2020).
Google Scholar
Bogaert, F. et al. How the use of nitrogen fertiliser may switch plant suitability for aphids: the case of Miscanthus, a promising biomass crop, and the aphid pest Rhopalosiphum maidis. Pest Manag. Sci. 73, 1648–1654. https://doi.org/10.1002/ps.4505 (2017).
Google Scholar
Radin, J. W. Control of plant growth by nitrogen: differences between cereals and broadleaf species. Plant Cell Environ. 6, 65–68 (1983).
Fereres, A., Lister, R. M., Araya, J. E. & Foster, J. E. Development and reproduction of the English grain aphid (Homoptera, Aphididae) on wheat cultivars infected with barley yellow dwarf virus. Environ. Entomol. 18, 388–393. https://doi.org/10.1093/ee/18.3.388 (1989).
Google Scholar
Pompon, J., Quiring, D., Goyer, C., Giordanengo, P. & Pelletier, Y. A phloem-sap feeder mixes phloem and xylem sap to regulate osmotic potential. J. Insect Physiol. 57, 1317–1322. https://doi.org/10.1016/j.jinsphys.2011.06.007 (2011).
Google Scholar
Tjallingii, W. F. Electronic recording of penetration behaviour by aphids. Entomol. Exp. Appl. 24, 721–730. https://doi.org/10.1111/j.1570-7458.1978.tb02836.x (1978).
Google Scholar
Mattson, W. J. Herbivory in relation to plant nitrogen content. Ann. Rev. Ecol. Syst. 11, 119–161. https://doi.org/10.1146/annurev.es.11.110180.001003 (1980).
Google Scholar
White, T. C. R. The Inadequate Environment—Nitrogen and the Abundance of Animals (Springer Verlag, 1993).
Aqueel, M. A. & Leather, S. R. Effect of nitrogen fertilizer on the growth and survival of Rhopalosiphum padi (L.) and Sitobion avenae (F.) (Homoptera: Aphididae) on different wheat cultivars. Crop Prot. 30, 216–221. https://doi.org/10.1016/j.cropro.2010.09.013 (2011).
Google Scholar
Sadras, V. O. & Lemaire, G. Quantifying crop nitrogen status for comparisons of agronomic practices and genotypes. Field Crops Res. 164, 54–64 (2014).
Google Scholar
Gastal, F., Lemaire, G., Durand, J. L. & Louarn, G. in Crop Physiology: Applications for Genetic Improvement and Agronomy (eds. Sadras, V. O. & Calderini, D. F.) 161–206 (Academic Press, 2015).
Lemaire, G. & Millard, P. An ecophysiological approach to modelling resource fluxes in competing plants. J. Exp. Bot. 50, 15–28. https://doi.org/10.1093/jexbot/50.330.15 (1999).
Google Scholar
Ainsworth, E. A. & Long, S. P. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol. 165, 351–372. https://doi.org/10.1111/j.1469-8137.2004.01224.x (2004).
Google Scholar
Sun, Y. C., Chen, F. J. & Ge, F. Elevated CO2 changes interspecific competition among three species of wheat aphids: Sitobion avenae, Rhopalosiphum padi, and Schizaphis graminum. Environ. Entomol. 38, 26–34. https://doi.org/10.1603/022.038.0105 (2009).
Google Scholar
Oehme, V., Högy, P., Zebitz, C. P. W. & Fangmeier, A. Effects of elevated atmospheric CO2 concentrations on phloem sap composition of spring crops and aphid performance. J. Plant Interact. 8, 74–84. https://doi.org/10.1080/17429145.2012.736200 (2013).
Google Scholar
Oehme, V., Hogy, P., Franzaring, J., Zebitz, C. P. W. & Fangmeier, A. Response of spring crops and associated aphids to elevated atmospheric CO2 concentrations. J. Appl. Bot. Food Qual. 84, 151–157 (2011).
Google Scholar
Dáder, B., Fereres, A., Moreno, A. & Trębicki, P. Elevated CO2 impacts bell pepper growth with consequences to Myzus persicae life history, feeding behaviour and virus transmission ability. Sci. Rep. 6, 19120. https://doi.org/10.1038/srep19120 (2016).
Google Scholar
Olin, S. et al. Modelling the response of yields and tissue C:N to changes in atmospheric CO2 and N management in the main wheat regions of western Europe. Biogeosciences 12, 2489–2515. https://doi.org/10.5194/bg-12-2489-2015 (2015).
Google Scholar
Justes, E., Mary, B., Meynard, J. M., Machet, J. M. & Thelierhuche, L. Determination of a critical nitrogen dilution curve for winter wheat crops. Ann. Bot. 74, 397–407 (1994).
Google Scholar
Evans, J. R. & Clarke, V. C. The nitrogen cost of photosynthesis. J. Exp. Bot. 70, 7–15. https://doi.org/10.1093/jxb/ery366 (2019).
Google Scholar
Mittler, T. E., Dadd, R. H. & Daniels, S. C. Utilization of different sugars by aphid Myzus persicae. J. Insect Physiol. 16, 1873–2000. https://doi.org/10.1016/0022-1910(70)90234-9 (1970).
Google Scholar
Douglas, A. E. et al. Sweet problems: insect traits defining the limits to dietary sugar utilisation by the pea aphid, Acyrthosiphon pisum. J. Exp. Biol. 209, 1395–1403. https://doi.org/10.1242/jeb.02148 (2006).
Google Scholar
Bloom, A. J., Chapin, F. S. I. & Mooney, H. A. Resource limitation in plants—an economic analogy. Ann. Rev. Ecol. Syst. 16, 363–392 (1985).
Google Scholar
Chapin, F. S. I., Schulze, E. D. & Mooney, H. A. The ecology and economics of storage in plants. Annu. Rev. Ecol. Syst. 21, 423–447 (1990).
Google Scholar
Ovenden, B. et al. Selection for water-soluble carbohydrate accumulation and investigation of genetic x environment interactions in an elite wheat breeding population. Theor. Appl. Gen. 130, 2445–2461. https://doi.org/10.1007/s00122-017-2969-2 (2017).
Google Scholar
del Pozo, A. et al. Physiological traits associated with wheat yield potential and performance under water-stress in a Mediterranean environment. Front. Plant Sci. https://doi.org/10.3389/fpls.2016.00987 (2016).
Google Scholar
Dixon, A. F. G. in Aphids Their Biology, Natural Enemies and Control, Vol. A (eds. Minks, A. K. & Harrewijn, P.) (Elsevier, 1987).
Brabec, M., Honek, A., Pekar, S. & Martinkova, Z. Population dynamics of aphids on cereals: digging in the time-series data to reveal population regulation caused by temperature. PLoS ONE https://doi.org/10.1371/journal.pone.0106228 (2014).
Google Scholar
Cid, M., Ávila, A., García, A., Abad, J. & Fereres, A. New sources of resistance to lettuce aphids in Lactuca spp. Arthropod.-Plant Interact. 6, 655–669. https://doi.org/10.1007/s11829-012-9213-4 (2012).
Google Scholar
Collado-Gonzalez, J. et al. Effects of water deficit during maturation on amino acids and jujube fruit eating quality. Maced. J. Chem. Chem. Eng. 33, 103–117. https://doi.org/10.20450/mjcce.2014.375 (2014).
Google Scholar
Riga, P. et al. Diffuse light affects the contents of vitamin C, phenolic compounds and free amino acids in lettuce plants. Food Chem. 272, 227–234. https://doi.org/10.1016/j.foodchem.2018.08.051 (2019).
Google Scholar
Nagumo, Y. et al. Rapid quantification of cyanamide by ultra-high-pressure liquid chromatography in fertilizer, soil or plant samples. J. Chromatogr. A 1216, 5614–5618. https://doi.org/10.1016/j.chroma.2009.05.067 (2009).
Google Scholar
Cerrillo, I. et al. Effect of fermentation and subsequent pasteurization processes on amino acids composition of orange juice. Plant Foods Hum. Nutr. 70, 153–159. https://doi.org/10.1007/s11130-015-0472-y (2015).
Google Scholar
Salazar, C., Armenta, J. M., Cortés, D. F. & Shulaev, V. Combination of an AccQ·Tag-ultra performance liquid chromatographic method with tandem mass spectrometry for the analysis of amino acids. Methods Mol. Biol. (Clifton N. J.) 828, 13–28. https://doi.org/10.1007/978-1-61779-445-2_2 (2012).
Google Scholar
Nadezdha, P. T., Pascal, B. A., Annick, M. & Panteley, D. P. HPLC analysis of mono- and disaccharides in food products. In Scientific Works Volume LX, 765–791 (Food Science, Engineering and Technology, 2013).
Greenland, S. Valid p-values behave exactly as they should: some misleading criticisms of p-values and their resolution with s-values. Am. Stat. 73, 106–114. https://doi.org/10.1080/00031305.2018.1529625 (2019).
Google Scholar
Sarria, E., Cid, M., Garzo, E. & Fereres, A. Excel workbook for automatic parameter calculation of EPG data. Comput. Electron. Agric. 67, 35–42. https://doi.org/10.1016/j.compag.2009.02.006 (2009).
Google Scholar
Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S 4th edn. (Springer, 2002).
Google Scholar
Garzo, E., Rizzo, E., Fereres, A. & Gomez, S. K. High levels of arbuscular mycorrhizal fungus colonization on Medicago truncatula reduces plant suitability as a host for pea aphids (Acyrthosiphon pisum). Insect Sci. 27, 99–112. https://doi.org/10.1111/1744-7917.12631 (2020).
Google Scholar
Potvin, C., Lechowicz, M. J. & Tardif, S. The statistical analysis of ecological response curves obtained from experiments involving repeated measures. Ecology 71, 1389–1400 (1990).
Google Scholar
Source: Ecology - nature.com