in

The role of plants and soil properties in the enzyme activities of substrates on hard coal mine spoil heaps

  • 1.

    Baldrian, P. et al. Enzyme activities and microbial biomass in topsoil layer during spontaneous succession in spoil heaps after brown coal mining. Soil Biol. Biochem. 40, 2107–2215. https://doi.org/10.1016/j.soilbio.2008.02.019 (2008).

    CAS  Article  Google Scholar 

  • 2.

    Gómez-Sagasti, M. T. et al. Microbial monitoring of the recovery of soil quality during heavy metal phytoremediation. Water Air Soil Poll. 223, 3249–3262. https://doi.org/10.1007/s11270-012-1106-8 (2012).

    ADS  CAS  Article  Google Scholar 

  • 3.

    Yang, Y. Z., Liu, S., Zheng, D. & Feng, S. Effect of cadmium, zinc and lead on soil enzymes activities. J. Environ. Sci. 18, 1135–1141. https://doi.org/10.1016/S1001-0742(06)60051-X (2006).

    Article  Google Scholar 

  • 4.

    Sheoran, V., Sheoran, A. S. & Poonia, P. Soil reclamation of abandoned mine land by revegetation: A review. Int. J. Soil Sedim. Water 3, 1–20 (2010).

    Google Scholar 

  • 5.

    Vahed, H., Shahinrokhsar, P. & Rezaei, M. Influence of some soil properties and temperature on urease activity in wetland rice soils. Am.-Euras. J. Agric. Environ. Sci. 11, 310–313 (2011).

    Google Scholar 

  • 6.

    Błońska, E. & Januszek, K. Usability of enzyme activity in the estimation of forest soil quality. Folia For. Polonica Ser. A 55, 18–26. https://doi.org/10.2478/ffp-2013-0003 (2013).

    Article  Google Scholar 

  • 7.

    Zhang, T., Wan, S., Kang, Y. & Feng, H. Urease activity and its relationships to soil physiochemical soil properties in a highly saline-sodic soil. J. Soil Sci. Plant. Nut. 14, 304–315. https://doi.org/10.4067/s0718-95162014005000025 (2014).

    Article  Google Scholar 

  • 8.

    Zhang, Y. et al. Soil bacterial and fungal diversity differently correlated with soil biochemistry in alpine grassland ecosystems in response to environmental changes. Sci. Rep. 7, 43077. https://doi.org/10.1038/srep43077 (2017).

    ADS  Article  PubMed  PubMed Central  Google Scholar 

  • 9.

    Zhang, Q. M. et al. Effects of fomesafen on soil enzyme activity, microbial population, and bacterial community composition. Environ. Monit. Assess. 186, 2801–2812. https://doi.org/10.1007/s10661-013-3581-9 (2014).

    CAS  Article  PubMed  Google Scholar 

  • 10.

    Sarathchandra, S., Perrott, K. & Upsdell, M. Microbiological and biochemical characteristics of a range of New Zealand soils under established pasture. Soil Biol. Biochem. 16, 177–183. https://doi.org/10.1016/0038-0717(84)90109-3 (1984).

    CAS  Article  Google Scholar 

  • 11.

    Fernández-Calviño, D. et al. Enzyme activities in vineyard soils long-term treated with copper-based fungicides. Soil Biol. Biochem. 42, 2119–2127. https://doi.org/10.1016/j.soilbio.2010.08.007 (2010).

    CAS  Article  Google Scholar 

  • 12.

    Bartelt-Ryser, J., Joshi, J., Schmid, B., Brandl, H. & Balser, T. Soil feedbacks of plant diversity on soil microbial communities and subsequent plant growth. Perspect. Plant. Ecol. 7, 27–49. https://doi.org/10.1016/j.ppees.2004.11.002 (2005).

    Article  Google Scholar 

  • 13.

    Kao-Kniffin, J. T. & Balser, T. C. Elevated CO2 differentially alters belowground plant and soil microbial community structure in reed canary grass-invaded experimental wetlands. Soil Biol. Biochem. 39, 517–525. https://doi.org/10.1016/j.soilbio.2006.08.024 (2007).

    CAS  Article  Google Scholar 

  • 14.

    Eisenhauer, N. et al. Root biomass and exudates link plant diversity with soil bacterial and fungal biomass. Sci. Rep. 7, 44641. https://doi.org/10.1038/srep44641 (2017).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 15.

    Broughton, L. C. & Gross, K. L. Patterns of diversity in plant and soil microbial communities along a productivity gradient in a Michigan old-field. Oecologia 125, 420–427. https://doi.org/10.1007/s004420000456 (2000).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 16.

    Stephan, A., Meyer, A. H. & Schmid, B. Plant diversity affects culturable soil bacteria in experimental grassland communities. J. Ecol. 86, 988–998. https://doi.org/10.1046/j.1365-2745.2000.00510.x (2000).

    Article  Google Scholar 

  • 17.

    Zak, D. R., Holmes, W. E., White, D. C., Peacock, A. D. & Tilman, D. Plant diversity, soil microbial communities, and ecosystem function: Are there any links?. Ecology 84, 2042–2050. https://doi.org/10.1890/02-0433 (2003).

    Article  Google Scholar 

  • 18.

    Eisenhauer, N. et al. Plant diversity effects on soil microorganisms support the singular hypothesis. Ecology 91, 485–496. https://doi.org/10.1890/08-2338.1 (2010).

    CAS  Article  PubMed  Google Scholar 

  • 19.

    Lange, M. et al. Biotic and abiotic properties mediating plant diversity effects on soil microbial communities in an experimental grassland. PLoS ONE 9, e96182. https://doi.org/10.1371/journal.pone.0096182 (2014).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 20.

    Wu, J. et al. Vegetation degradation impacts soil nutrients and enzyme activities in wet meadow on the Qinghai-Tibet Plateau. Sci. Rep. 10, 21271. https://doi.org/10.1038/s41598-020-78182-9 (2020).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 21.

    Mocek-Płóciniak, A. Utilisation of enzymatic activity for the evaluation of the impact of anthropogenic changes caused by heavy metals in soil environment. Nauka Przyr. Technol. 4, 1–10 (2010).

    Google Scholar 

  • 22.

    Kot, A. & Frąc, M. Methods used in the evaluation of the organic wastes influence on soil microbial activity. Post. Mikrobiol. 53, 183–193 (2014).

    Google Scholar 

  • 23.

    Kuziemska, B. Enzymatic activity of nickel contaminated soils. Teka. Kom. Ochr. Kszt. Środ. Przyr. 11, 77–89 (2014).

    Google Scholar 

  • 24.

    Kourtev, P. S., Ehrenfeld, J. G. & Haggblom, M. Exotic plant species alter the microbial community structure and function in the soil. Ecology 83, 3152–3166. https://doi.org/10.1890/0012-9658(2002)083(3152:epsatm)2.0.co;2 (2002).

    Article  Google Scholar 

  • 25.

    Pei, S. F., Fu, H. & Wan, C. G. Changes in soil properties and vegetation following exclosure and grazing in degraded Alxa desert steppe of Inner Mongolia, China. Agric. Ecosyst. Environ. 124, 33–39. https://doi.org/10.1016/j.agee.2007.08.008 (2008).

    Article  Google Scholar 

  • 26.

    Wang, C., Wang, G., Liu, W. & Wu, P. The effect of plant-soil-enzyme interaction on plant composition, biomass, diversity of alpine meadows in the Qinghai-Tibetan Plateau. Int. J. Ecol. 2011, 1–10. https://doi.org/10.1155/2011/180926 (2011).

    Article  Google Scholar 

  • 27.

    Wyszkowska, J. Effect of soil contamination with Treflan 480 EC on biochemical properties of soil. Pol. J. Environ. Stud. 11, 71–78 (2002).

    CAS  Google Scholar 

  • 28.

    Aon, M. A. & Colaneri, A. C. II. Temporal and spatial evolution of enzymatic activities and physico-chemical properties in an agricultural soil. Appl. Soil. Ecol. 18, 255–270. https://doi.org/10.1016/s0929-1393(01)00161-5 (2001).

    Article  Google Scholar 

  • 29.

    Li, J. J., Zheng, Y. M., Yan, J. X., Li, H. J. & He, J. Z. Succession of plant and soil microbial communities with restoration of abandoned land in the Loess Plateau, China. J. Soil. Sediment 13, 760–769. https://doi.org/10.1007/s11368-013-0652-z (2013).

    Article  Google Scholar 

  • 30.

    Heděnec, P. et al. Enzyme activity of topsoil layer on reclaimed and unreclaimed post-mining sites. Biol. Commun. 62, 19–25. https://doi.org/10.21638/11701/spbu03.2017.103 (2017).

    Article  Google Scholar 

  • 31.

    Lia, J., Zhoub, X., Yan, J., Lia, H. & He, J. Effects of regenerating vegetation on soil enzyme activity and microbial structure in reclaimed soils on a surface coalmine site. Appl. Soil Ecol. 87, 56–62. https://doi.org/10.1016/j.apsoil.2014.11.010 (2015).

    Article  Google Scholar 

  • 32.

    Kompała-Bąba, A. et al. Do the dominant plant species impact the substrate and vegetation composition of post-coal mining spoil heaps?. Ecol. Eng. 143, 105685. https://doi.org/10.1016/j.ecoleng.2019.105685 (2020).

    Article  Google Scholar 

  • 33.

    Kowarik, I. Novel urban ecosystems, biodiversity, and conservation. Environ. Pollut. 159, 1974–1983. https://doi.org/10.1016/j.envpol.2011.02.022 (2011).

    CAS  Article  PubMed  Google Scholar 

  • 34.

    Frouz, J. & Nováková, A. Development of soil microbial properties in topsoil layer during spontaneous succession in heaps after brown coal mining in relation to humus microstructure development. Geoderma 129, 54–64. https://doi.org/10.1016/j.geoderma.2004.12.033 (2005).

    ADS  Article  Google Scholar 

  • 35.

    Frouz, J. et al. The effect of topsoil removal in restored heathland on soil fauna, topsoil microstructure and cellulose: Implication for ecosystem restoration. Biodivers. Conserv. 18, 3963–3978. https://doi.org/10.1007/s10531-009-9692-5 (2008).

    Article  Google Scholar 

  • 36.

    Cabała, J. M., Cmiel, S. R. & Idziak, A. F. Environmental impact of mining activity inthe Upper Silesian Coal Basin (Poland). Geol. Belg. 7, 225–229 (2004).

    Google Scholar 

  • 37.

    Kompała-Bąba, A. et al. Vegetation diversity on coal mine spoil heaps—How important is the texture of the soil substrate?. Biologia 74, 419–436. https://doi.org/10.2478/s11756-019-00218-x (2019).

    CAS  Article  Google Scholar 

  • 38.

    Woźniak, G. Diversity of vegetation on coal-mine heaps of the Upper Silesia (Poland) (Instytut Botaniki im. W. Szafera, 2010).

    Google Scholar 

  • 39.

    Bąba, W. et al. Arbuscular mycorrhizal fungi (AMF) root colonization dynamics of Molinia caerulea (L.) Moench. in grasslands and post-industrial sites. Ecol. Eng. 95, 817–827. https://doi.org/10.1016/j.ecoleng.2016.07.013 (2016).

    Article  Google Scholar 

  • 40.

    Pietrzykowski, M., Socha, J. & van Doorn, N. S. Linking heavy metal bioavailability (Cd, Cu, Zn and Pb) in Scots pine needles to soil properties in reclaimed mine areas. Sci. Total Environ. 470, 501–510. https://doi.org/10.1016/j.scitotenv.2013.10.008 (2014).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 41.

    Braun-Blanquet, J. Grundzüge der Vegetationskunde 3rd edn. (Springer, 1964).

    Google Scholar 

  • 42.

    Bonham, C. D. Measurements for Terrestrial Vegetation 2nd edn. (Wiley, 2013).

    Google Scholar 

  • 43.

    Tichý, L. & Holt, J. JUICE Program for Management, Analysis and Classifications of Ecological Data (Masaryk University, 2006).

    Google Scholar 

  • 44.

    Ge, G. F. et al. Geographical and climatic differences in long-term effect of organic and inorganic amendments on soil enzymatic activities and respiration in field experimental stations of China. Ecol. Complex. 6, 421–431. https://doi.org/10.1016/j.ecocom.2009.02.001 (2009).

    Article  Google Scholar 

  • 45.

    Wolińska, A. & Stępniewska, Z. Dehydrogenase Activity in the Soil Environment in Dehydrogenases 183–210 (Intech Open, 2012).

    Google Scholar 

  • 46.

    Lemanowicz, J. Dynamics of phosphorus content and the activity of phosphatase in forest soil in the sustained nitrogen compounds emissions zone. Environ. Sci. Pollut. R. 25, 33773–33782. https://doi.org/10.1007/s11356-018-3348-5 (2018).

    CAS  Article  Google Scholar 

  • 47.

    Haroni, N. N., Zarafshar, M., Badehian, Z., Sharma, A. & Bader, M. K. F. Tree seedlings suffer oxidative stress but stimulate soil enzyme activity in oil sludge-contaminated soil in a species-specific manner. Trees 34, 1267–1279. https://doi.org/10.1007/s00468-020-01996-7 (2020).

    CAS  Article  Google Scholar 

  • 48.

    Banks, M. et al. The Effect of Plants on the Degradation and Toxicity of Petroleum Contaminants in Soil: A Field Assessment in Phytoremediation 75–96 (Springer, 2003).

    Google Scholar 

  • 49.

    Schinner, F., Öhlinger, R., Kandeler, E. & Margasin, R. Methods in Soil Biology (Springer-Verlag, 1996).

    Google Scholar 

  • 50.

    Alef, K. & Nannipieri, P. Methods in Applied Soil Microbiology and Biochemistry (Academic Press, 1995).

    Google Scholar 

  • 51.

    Wyszkowska, J. & Wyszkowski, M. Effect of cadmium and magnesium on enzymatic activity in soil. Pol. J. Environ. Stud. 12, 473–479 (2003).

    CAS  Google Scholar 

  • 52.

    Bending, G. D., Turner, M. K., Rayns, F., Marie-Claude Marx, M.-C. & Wood, M. Microbial and biochemical soil quality indicators and their potential for differentiating areas under contrasting agricultural management regimes. Soil Biol. Biochem. 36, 1785–1792. https://doi.org/10.1016/j.soilbio.2004.04.035 (2004).

    CAS  Article  Google Scholar 

  • 53.

    Rodriguez-Loinaz, G., Onaindia, M., Amezaga, I., Mijangos, I. & Garbisu, C. Relationship between vegetation diversity and soil functional diversity in native mixed-oak forests. Soil Biol. Biochem. 40, 49–60. https://doi.org/10.1016/j.soilbio.2007.04.015 (2008).

    CAS  Article  Google Scholar 

  • 54.

    Bednarek, R., Dziadowiec, H., Pokojska, U. & Prusinkiewicz, Z. Ecological and Soil Studies (PWN, 2005).

    Google Scholar 

  • 55.

    Saetre, P. Decomposition, microbial community structure, and earthworm effects along a birch–spruce soil gradient. Ecology 79, 834–846. https://doi.org/10.1890/0012-9658(1998)079(0834:DMCSAE)2.0.CO;2 (1998).

    Article  Google Scholar 

  • 56.

    Orwin, K. H., Wardle, D. A. & Greenfield, L. G. Context-dependent changes in the resistance and resilience of soil microbes to an experimental disturbance for three primary plant chronosequences. Oikos 112, 196–208. https://doi.org/10.1111/j.0030-1299.2006.13813.x (2006).

    Article  Google Scholar 

  • 57.

    ter Braak, C. J. F. & Šmilauer, P. Canoco Reference Manual and User’s Guide: Software for Ordination, Version 5.0 (Microcomputer Power, 2012).

    Google Scholar 

  • 58.

    R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2018).

  • 59.

    Dell Inc. Dell Statistica (data analysis software system), version 13. software.dell.com.

  • 60.

    Fontaine, S., Mariotti, A. & Abbadie, L. The priming effect of organic matter: A question of microbial competition?. Soil Biol. Biochem. 35, 837–843. https://doi.org/10.1016/s0038-0717(03)00123-8 (2003).

    CAS  Article  Google Scholar 

  • 61.

    Chodak, M. & Niklińska, M. Effect of texture and tree species on microbial properties of mine soils. Appl. Soil Ecol. 46, 268–275. https://doi.org/10.1016/j.apsoil.2010.08.002 (2010).

    Article  Google Scholar 

  • 62.

    Chodak, M. & Niklińska, M. The effect of different tree species on the chemical and microbial properties of reclaimed mine soils. Biol. Fertil. Soils 46, 555–566. https://doi.org/10.1007/s00374-010-0462-z (2010).

    CAS  Article  Google Scholar 

  • 63.

    Ciarkowska, K., Solek-Podwika, K. & Wieczorek, J. Enzyme activity as an indicator of soil-rehabilitation processes at a zinc and lead ore mining and processing area. J. Environ. Manage. 132, 250–256. https://doi.org/10.1016/j.jenvman.2013.10.022 (2014).

    CAS  Article  PubMed  Google Scholar 

  • 64.

    Zhang, W. Y., Yao, D. X., Zhang, Z. G., Yang, Q. & An, S. K. Characteristics of soil enzymes and the dominant species of repair trees in the reclamation of coal mine area. J. Coal Sci. Eng. 19, 256–261. https://doi.org/10.1007/s12404-013-0223-3 (2013).

    CAS  Article  Google Scholar 

  • 65.

    Šantrůčková, H., Jaroslav, V., Picek, T. & Kopáček, J. Soil biochemical activity and phosphorus transformations and losses from acidified forest soils. Soil Biol. Biochem. 36, 1569–1576. https://doi.org/10.1016/j.soilbio.2004.07.015 (2004).

    CAS  Article  Google Scholar 

  • 66.

    Abakumov, E. & Frouz, J. Humus accumulation and humification during soil development in post-mining soil. In Soil Biota and Ecosystem Development in Post Mining Sites (ed. Frouz, J.) (CRC Press, 2013).

    Google Scholar 

  • 67.

    Stefanowicz, A. M., Kapusta, P., Błońska, A., Kompała-Bąba, A. & Woźniak, G. Effects of Calamagrostis epigejos, Chamaenerion palustre and Tussilago farfara on nutrient availability and microbial activity in the surface layer of spoil heaps after hard coal mining. Ecol. Eng. 83, 328–337. https://doi.org/10.1016/j.ecoleng.2015.06.034 (2015).

    Article  Google Scholar 

  • 68.

    Markowicz, A., Woźniak, G., Borymski, S., Piotrowska-Seget, Z. & Chmura, D. Links in the functional diversity between soil microorganisms and plant communities during natural succession in coal mine spoil heaps. Ecol. Res. 30, 1005–1014. https://doi.org/10.1007/s11284-015-1301-3 (2015).

    CAS  Article  Google Scholar 

  • 69.

    Lauber, C. L., Hamady, M., Knight, R. & Fierer, N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community composition at the continental scale. Appl. Environ. Microbiol. 75, 5111–5120. https://doi.org/10.1128/aem.00335-09 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 70.

    Wang, A. S., Angle, J. S., Chaney, R. L., Delorme, T. A. & McIntosh, M. Changes in soil biological activities under reduced soil pH during Thlaspi caerulescens phytoextraction. Soil Biol. Biochem. 38, 1451–1461. https://doi.org/10.1016/j.soilbio.2005.11.001 (2006).

    CAS  Article  Google Scholar 

  • 71.

    Lee, S. S. et al. Heavy metal immobilization in soil near abandoned mines using eggshell waste and rapeseed residue. Environ. Sci. Pollut. R. 20, 1719–1726. https://doi.org/10.1007/s11356-012-1104-9 (2013).

    CAS  Article  Google Scholar 

  • 72.

    Olander, L. P. & Vitousek, P. M. Regulation of soil phosphatase and chitinase activity by N and P availability. Biogeochemistry 49, 175–190 (2000).

    CAS  Article  Google Scholar 

  • 73.

    Geisseler, D., Horwath, W. & Scow, K. Soil moisture and plant residue addition interact in their effect on extracellular enzyme activity. Pedobiologia 54, 71–78. https://doi.org/10.1016/j.pedobi.2010.10.001 (2011).

    Article  Google Scholar 

  • 74.

    Patrzałek, A. The properties of initial soil arising at the dumping site of carboniferous waste. Zesz. Nauk. Polit. Śl. Górnictwo 248, 151–156 (2001).

    Google Scholar 

  • 75.

    Šourková, M. et al. Soil development and properties of microbial biomass succession in reclaimed postmining sites near Sokolov (Czech Republic) and near Cottbus (Germany). Geoderma 129, 73–80. https://doi.org/10.1016/j.geoderma.2004.12.032 (2005).

    ADS  CAS  Article  Google Scholar 

  • 76.

    Ellhottová, D., Krištůlek, V., Malý, S. & Frouz, J. Rhizosphere effect of colonizer plant species on the development of soil microbial community during primary succession on postmining sites. Commun. Soil Sci. Plant Anal. 40, 758–770. https://doi.org/10.1080/00103620802693193 (2009).

    CAS  Article  Google Scholar 

  • 77.

    Finkenbein, P., Kretschmer, K., Kuka, K., Klotz, S. & Heilmeier, H. Soil enzymes activities as bioindicators for substrate quality in revegetation of a subtropical coal mining dump. Soil Biol. Biochem. 56, 87–89. https://doi.org/10.1016/j.soilbio.2012.02.012 (2013).

    CAS  Article  Google Scholar 

  • 78.

    Tischer, A., Blagodatskaya, E. & Harmer, U. Extracellular enzyme activities in a tropical mountain rainforest region of southern Ecuador affected by low soil P status and land-use change. Appl. Soil Ecol. 74, 1–11. https://doi.org/10.1016/j.apsoil.2013.09.007 (2014).

    Article  Google Scholar 

  • 79.

    Liu, Y. et al. Long-term forest succession improves plant diversity and soil quality but not significantly increase soil microbial diversity: Evidence from the Loess Plateau. Ecol. Eng. 142, 105631. https://doi.org/10.1016/j.ecoleng.2019.105631 (2020).

    Article  Google Scholar 

  • 80.

    Tscherko, D., Hammesfahr, U., Marx, M. C. & Kandeler, E. Shifts in rhizosphere microbial communities and enzyme activity of Poa alpina across an alpine chronosequence. Soil Biol. Biochem. 36, 1685–1698. https://doi.org/10.1016/j.soilbio.2004.07.004 (2004).

    CAS  Article  Google Scholar 

  • 81.

    Orwin, K. H. et al. Linkages of plant traits to soil properties and the functioning of temperate grassland. J. Ecol. 98, 1074–1083. https://doi.org/10.1111/j.1365-2745.2010.01679.x (2010).

    Article  Google Scholar 

  • 82.

    Han, X. M. et al. Effects of vegetation type on soil microbial community structure and catabolic diversity assessed by polyphasic methods in North China. J. Environ. Sci. China 19, 1228–1234. https://doi.org/10.1016/s1001-0742(07)60200-9 (2007).

    Article  PubMed  Google Scholar 

  • 83.

    Lambers, H., Mougel, C., Jaillard, B. & Hinsinger, P. Plant-microbe-soil interactions in the rhizosphere: An evolutionary perspective. Plant Soil 321, 83–115. https://doi.org/10.1007/s11104-009-0042-x (2009).

    CAS  Article  Google Scholar 

  • 84.

    De Baets, S., Poesen, J., Gyssels, G. & Knapen, A. Effects of grass roots on the erodibility of topsoil during concentrated flow. Geomorphology 76, 54–67. https://doi.org/10.1016/j.geomorph.2005.10.002 (2006).

    ADS  Article  Google Scholar 

  • 85.

    Mueller, K., Tilman, D., Fornara, D. & Hobbie, S. Root depth distribution and the diversity-productivity relationship in a long-term grassland experiment. Ecology 94, 787–793. https://doi.org/10.1890/12-1399.1 (2013).

    Article  Google Scholar 

  • 86.

    Ravenek, J. M. et al. Long-term study of root biomass in a biodiversity experiment reveals shifts in diversity effects over time. Oikos 123, 1528–1536. https://doi.org/10.1111/oik.01502 (2014).

    Article  Google Scholar 

  • 87.

    Gil-Sotres, F., Trasar-Cepeda, C., Leirós, M. C. & Seoane, S. Different approaches to evaluating soil quality using biochemical properties. Soil Biol. Biochem. 37, 877–887. https://doi.org/10.1016/j.soilbio.2004.10.003 (2005).

    CAS  Article  Google Scholar 

  • 88.

    Tan, X., Chang, S. X. & Kabzems, R. Soil compaction and forest floor removal reduced microbial biomass and enzyme activities in a boreal aspen forest soil. Biol. Fertil. Soils 44, 471–479. https://doi.org/10.1007/s00374-007-0229-3 (2008).

    Article  Google Scholar 

  • 89.

    Nanippieri, P., Giagnoni, L., Landi, L. & Renella, G. Role of phosphatase enzymes in soil. In Phosphorus in Action (eds Bünemann, E. K. et al.) 215–244 (Springer, 2011).

    Google Scholar 

  • 90.

    Sakurai, M., Wasaki, J., Tomizawa, Y., Shinano, T. & Osaki, M. Analysis of bacterial communities on alkaline phosphatase genes in soil supplied with organic matter. Soil Sci. Plant Nutr. 54, 62–71. https://doi.org/10.1111/j.1747-0765.2007.00210.x (2008).

    CAS  Article  Google Scholar 

  • 91.

    Mariotte, P. et al. Subordinate plant species impact on soil microbial communities and ecosystem functioning in grasslands: Findings from a removal experiment. Perspect. Plant. Ecol. 15, 77–85. https://doi.org/10.1016/j.ppees.2012.12.003 (2013).

    Article  Google Scholar 

  • 92.

    Zhang, C. B. et al. Effects of plant diversity on nutrient retention and enzyme activities in a full-scale constructed wetland. Bioresour. Technol. 101, 1686–1692. https://doi.org/10.1016/j.biortech.2009.10.001 (2010).

    CAS  Article  PubMed  Google Scholar 

  • 93.

    Allison, V. J., Condron, L. M., Peltzer, D. A., Richardson, S. J. & Turner, B. L. Changes in enzyme activities and soil microbial community composition along carbon and nutrient gradients at the Franz Josef chronosequence, New Zealand. Soil Biol. Biochem. 39, 1770–1781. https://doi.org/10.1016/j.soilbio.2007.02.006 (2007).

    CAS  Article  Google Scholar 


  • Source: Ecology - nature.com

    MIT and Danish university students unite to envision a more sustainable future

    18S rRNA gene sequences of leptocephalus gut contents, particulate organic matter, and biological oceanographic conditions in the western North Pacific