Jones, K. E. et al. Global trends in emerging infectious diseases. Nature 451, 990–993 (2008).
Google Scholar
Woolhouse, M. E. et al. Temporal trends in the discovery of human viruses. Proc. R. Soc. B 275, 2111–2115 (2008).
Google Scholar
Smith, K. F. et al. Global rise in human infectious disease outbreaks. J. R. Soc. Interface 11, 20140950 (2014).
Google Scholar
Carlson, C. J. et al. Climate change will drive novel cross-species viral transmission. Preprint at bioRxiv https://doi.org/10.1101/2020.01.24.918755 (2020).
Swei, A., Couper, L. I., Coffey, L. L., Kapan, D. & Bennett, S. Patterns, drivers, and challenges of vector-borne disease emergence. Vector Borne Zoonotic Dis. 20, 159–170 (2020).
Google Scholar
Belay, E. D. et al. Zoonotic disease programs for enhancing global health security. Emerg. Infect. Dis. 23, S65 (2017).
Google Scholar
Morse, S. S. et al. Prediction and prevention of the next pandemic zoonosis. Lancet 380, 1956–1965 (2012).
Google Scholar
Carroll, D. et al. The global virome project. Science 359, 872–874 (2018).
Google Scholar
Carlson, C. J., Zipfel, C. M., Garnier, R. & Bansal, S. Global estimates of mammalian viral diversity accounting for host sharing. Nat. Ecol. Evol. 3, 1070–1075 (2019).
Google Scholar
Babayan, S. A., Orton, R. J. & Streicker, D. G. Predicting reservoir hosts and arthropod vectors from evolutionary signatures in RNA virus genomes. Science 362, 577–580 (2018).
Google Scholar
Han, B. A. et al. Undiscovered bat hosts of filoviruses. PLoS Negl. Trop. Dis. 10, e0004815 (2016).
Google Scholar
Schmidt, J. P. et al. Spatiotemporal fluctuations and triggers of Ebola virus spillover. Emerg. Infect. Dis. 23, 415 (2017).
Google Scholar
Guth, S., Visher, E., Boots, M. & Brook, C. E. Host phylogenetic distance drives trends in virus virulence and transmissibility across the animal–human interface. Phil. Trans. R. Soc. Biol. Sci. 374, 20190296 (2019).
Glennon, E. E. et al. Syndromic detectability of haemorrhagic fever outbreaks. Preprint at medRxiv https://doi.org/10.1101/2020.03.28.20019463 (2020).
Pigott, D. M. et al. Local, national, and regional viral haemorrhagic fever pandemic potential in Africa: a multistage analysis. Lancet 390, 2662–2672 (2017).
Google Scholar
Palmer, S., Brown, D. & Morgan, D. Early qualitative risk assessment of the emerging zoonotic potential of animal diseases. BMJ 331, 1256–1260 (2005).
Google Scholar
Grange, Z. L. et al. Ranking the risk of animal-to-human spillover for newly discovered viruses. Proc. Natl Acad. Sci. USA 118, e2002324118 (2021).
Google Scholar
Carlson, C. J. From PREDICT to prevention, one pandemic later. Lancet Microbe 1, e6–e7 (2020).
Google Scholar
Holmes, E., Rambaut, A. & Andersen, K. Pandemics: spend on surveillance, not prediction. Nature 558, 180–182 (2018).
Google Scholar
Breiman, L. Statistical modeling: the two cultures (with comments and a rejoinder by the author). Stat. Sci. 16, 199–231 (2001).
Mouquet, N. et al. Predictive ecology in a changing world. J. Appl. Ecol. 52, 1293–1310 (2015).
Olival, K. J. et al. Host and viral traits predict zoonotic spillover from mammals. Nature 546, 646–650 (2017).
Google Scholar
Stephens, P. R. et al. Global mammal parasite database version 2.0. Ecology 98, 1476 (2017).
Google Scholar
Wardeh, M., Risley, C., McIntyre, M. K., Setzkorn, C. & Baylis, M. Database of host–pathogen and related species interactions, and their global distribution. Sci. Data 2, 150049 (2015).
Google Scholar
Shaw, L. P. et al. The phylogenetic range of bacterial and viral pathogens of vertebrates. Mol. Ecol. 29, 3361–3379 (2020).
Google Scholar
Gibb, R. et al. Data proliferation, reconciliation, and synthesis in viral ecology. BioScience https://doi.org/10.1093/biosci/biab080 (2021).
Dallas, T., Park, A. W. & Drake, J. M. Predicting cryptic links in host–parasite networks. PLoS Comput. Biol. 13, e1005557 (2017).
Google Scholar
Poisot, T. et al. Imputing the mammalian virome with linear filtering and singular value decomposition. Preprint at https://arxiv.org/abs/2105.14973 (2021).
Carlson, C. J. et al. The Global Virome in One Network (VIRION): an atlas of vertebrate–virus associations. Preprint at bioRxiv https://doi.org/10.1101/2021.08.06.455442 (2021).
Albery, G. F., Eskew, E. A., Ross, N. & Olival, K. J. Predicting the global mammalian viral sharing network using phylogeography. Nat. Commun. 11, 2260 (2020).
Davies, T. J. & Pedersen, A. B. Phylogeny and geography predict pathogen community similarity in wild primates and humans. Proc. R. Soc. B Biol. Sci. 275, 1695–1701 (2008).
Guy, C., Thiagavel, J., Mideo, N. & Ratcliffe, J. M. Phylogeny matters: revisiting ‘a comparison of bats and rodents as reservoirs of zoonotic viruses’. R. Soc. Open Sci. 6, 181182 (2019).
Google Scholar
Washburne, A. D. et al. Taxonomic patterns in the zoonotic potential of mammalian viruses. PeerJ 6, e5979 (2018).
Google Scholar
Plowright, R. K. et al. Pathways to zoonotic spillover. Nat. Rev. Microbiol. 15, 502 (2017).
Google Scholar
Stephens, P. R. et al. The macroecology of infectious diseases: a new perspective on global-scale drivers of pathogen distributions and impacts. Ecol. Lett. 19, 1159–1171 (2016).
Google Scholar
Longdon, B., Brockhurst, M. A., Russell, C. A., Welch, J. J. & Jiggins, F. M. The evolution and genetics of virus host shifts. PLoS Pathog. 10, e1004395 (2014).
Google Scholar
Farrell, M. J., Elmasri, M., Stephens, D. A. & Davies, T. J. Predicting missing links in global host–parasite networks. bioRxiv https://doi.org/10.1101/2020.02.25.965046 (2020).
Gilbert, A. T. et al. Deciphering serology to understand the ecology of infectious diseases in wildlife. EcoHealth 10, 298–313 (2013).
Google Scholar
Becker, D. J., Seifert, S. N. & Carlson, C. J. Beyond infection: integrating competence into reservoir host prediction. Trends Ecol. Evol. 35, 1062–1065 (2020).
Google Scholar
Walsh, M. G., Mor, S. M., Maity, H. & Hossain, S. A preliminary ecological profile of Kyasanur Forest disease virus hosts among the mammalian wildlife of the Western Ghats, India. Ticks Tick Borne Dis. 11, 101419 (2020).
Google Scholar
Plowright, R. K. et al. Prioritizing surveillance of Nipah virus in India. PLoS Negl. Trop. Dis. 13, e0007393 (2019).
Google Scholar
Schmidt, J. P. et al. Ecological indicators of mammal exposure to Ebolavirus. Philos. Trans. R. Soc. B Biol. Sci. 374, 20180337 (2019).
Worsley-Tonks, K. E. et al. Using host traits to predict reservoir host species of rabies virus. PLoS Negl. Trop. Dis. 14, e0008940 (2020).
Google Scholar
Woolhouse, M. E. & Gowtage-Sequeria, S. Host range and emerging and reemerging pathogens. Emerg. Infect. Dis. 11, 1842 (2005).
Google Scholar
Johnson, C. K. et al. Spillover and pandemic properties of zoonotic viruses with high host plasticity. Sci. Rep. 5, 14830 (2015).
Elena, S. F. & Sanjuán, R. Adaptive value of high mutation rates of RNA viruses: separating causes from consequences. J. Virol. 79, 11555–11558 (2005).
Google Scholar
Duffy, S. Why are RNA virus mutation rates so damn high? PLoS Biol. 16, e3000003 (2018).
Google Scholar
Grewelle, R. E. Larger viral genome size facilitates emergence of zoonotic diseases. Preprint at bioRxiv https://doi.org/10.1101/2020.03.10.986109 (2020).
Mollentze, N. & Streicker, D. G. Viral zoonotic risk is homogenous among taxonomic orders of mammalian and avian reservoir hosts. Proc. Natl Acad. Sci. USA 117, 9423–9430 (2020).
Google Scholar
Walker, J. W., Han, B. A., Ott, I. M. & Drake, J. M. Transmissibility of emerging viral zoonoses. PLoS ONE 13, e0206926 (2018).
Google Scholar
Damas, J. et al. Broad host range of SARS-CoV-2 predicted by comparative and structural analysis of ACE2 in vertebrates. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2010146117 (2020).
Zhang, Z. et al. Rapid identification of human-infecting viruses. Transbound. Emerg. Dis. 66, 2517–2522 (2019).
Google Scholar
Eng, C. L., Tong, J. C. & Tan, T. W. Predicting zoonotic risk of influenza A viruses from host tropism protein signature using random forest. Int. J. Mol. Sci. 18, 1135 (2017).
Google Scholar
Li, J. et al. Machine learning methods for predicting human-adaptive influenza A viruses based on viral nucleotide compositions. Mol. Biol. Evol. 37, 1224–1236 (2020).
Google Scholar
Kim, B., Niu, X., Hunter, D. R. & Cao, X. A dynamic additive and multiplicative effects model with application to the United Nations voting behaviors. Preprint at https://arxiv.org/abs/1803.06711 (2018).
Becker, D. et al. Optimizing predictive models to prioritize viral discovery in zoonotic reservoirs. Lancet Microbe (in the press).
Han, B. A., Schmidt, J. P., Bowden, S. E. & Drake, J. M. Rodent reservoirs of future zoonotic diseases. Proc. Natl Acad. Sci. USA 112, 7039–7044 (2015).
Google Scholar
Plourde, B. T. et al. Are disease reservoirs special? Taxonomic and life history characteristics. PLoS ONE 12, e0180716 (2017).
Google Scholar
Keesing, F. et al. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 468, 647–652 (2010).
Google Scholar
Albery, G. F. & Becker, D. J. Fast-lived hosts and zoonotic risk. Trends Parasitol. 37, 117–129 (2021).
Google Scholar
Young, C. C. & Olival, K. J. Optimizing viral discovery in bats. PLoS ONE 11, e0149237 (2016).
Google Scholar
Albery, G. F. et al. Urban-adapted mammal species have more known pathogens. Preprint at bioRxiv https://doi.org/10.1101/2021.01.02.425084 (2021).
Wille, M., Geoghegan, J. L. & Holmes, E. C. How accurately can we assess zoonotic risk? PLoS Biol. 19, e3001135 (2021).
Google Scholar
Gibb, R. et al. Mammal virus diversity estimates are unstable due to accelerating discovery effort. Preprint at bioRxiv https://doi.org/10.1101/2021.08.10.455791 (2021).
Xu, G. J. et al. Comprehensive serological profiling of human populations using a synthetic human virome. Science 348, aaa0698 (2015).
Google Scholar
Geoghegan, J. L. & Holmes, E. C. Predicting virus emergence amid evolutionary noise. Open Biol. 7, 170189 (2017).
Google Scholar
Fischhoff, I. R., Castellanos, A. A., Rodrigues, J. P., Varsani, A. & Han, B. A. Predicting the zoonotic capacity of mammals to transmit SARS-CoV-2. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2021.1651 (2021).
Hou, Y. et al. Angiotensin-converting enzyme 2 (ACE2) proteins of different bat species confer variable susceptibility to SARS-CoV entry. Arch. Virol. 155, 1563–1569 (2010).
Google Scholar
Thompson, A. J., de Vries, R. P. & Paulson, J. C. Virus recognition of glycan receptors. Curr. Opin. Virol. 34, 117–129 (2019).
Google Scholar
Kocher, J. F. et al. Bat caliciviruses and human noroviruses are antigenically similar and have overlapping histo-blood group antigen binding profiles. Mbio 9, e00869-18 (2018).
Google Scholar
Chiramel, A. I. et al. TRIM5α restricts flavivirus replication by targeting the viral protease for proteasomal degradation. Cell Rep. 27, 3269–3283 (2019).
Google Scholar
Young, F., Rogers, S. & Robertson, D. L. Predicting host taxonomic information from viral genomes: a comparison of feature representations. PLoS Comput. Biol. 16, e1007894 (2020).
Google Scholar
Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373, 871–876 (2021).
Google Scholar
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
Google Scholar
Truong, P., Garcia-Vallve, S. & Puigbo, P. An unsupervised algorithm for host identification in flaviviruses. Life https://doi.org/10.3390/life11050442 (2021).
Mollentze, N., Babayan, S. & Streicker, D. Identifying and prioritizing potential human-infecting viruses from their genome sequences. PLoS Biol. 19, e3001390 (2021).
Google Scholar
Wang, W. et al. A network-based integrated framework for predicting virus–prokaryote interactions. NAR Genom. Bioinform. 2, lqaa044 (2020).
Google Scholar
Bartoszewicz, J. M., Seidel, A. & Renard, B. Y. Interpretable detection of novel human viruses from genome sequencing data. NAR Genom. Bioinform. 3, lqab004 (2021).
Google Scholar
He, X. et al. Neural collaborative filtering. In Proc. 26th International Conference on World Wide Web 26, 173–182 (Republic and Canton of Geneva, Switzerland, 2017).
Fout, A., Byrd, J., Shariat, B. & Ben-Hur, A. Protein interface prediction using graph convolutional networks. NIPS’17: Proc. 31st International Conference on Neural Information Processing Systems 31, 6533–6542 (2017).
Hamilton, W. L., Ying, R. & Leskovec, J. Representation learning on graphs: methods and applications. IEEE Data Eng. Bull. 40, 52–74 (2017).
Bergner, L. M. et al. Characterizing and evaluating the zoonotic potential of novel viruses discovered in vampire bats. Viruses 13, 252 (2021).
Google Scholar
Dietze, M. C. et al. Iterative near-term ecological forecasting: needs, opportunities, and challenges. Proc. Natl Acad. Sci. USA 115, 1424–1432 (2018).
Google Scholar
Schulz, J. E. et al. Serological evidence for henipa-like and filo-like viruses in Trinidad bats. J. Infect. Dis. 221, S375–S382 (2020).
Google Scholar
Brook, C. E. et al. Disentangling serology to elucidate henipa- and filovirus transmission in Madagascar fruit bats. J. Anim. Ecol. 88, 1001–1016 (2019).
Google Scholar
Seifert, S. N. et al. Rousettus aegyptiacus bats do not support productive Nipah virus replication. J. Infect. Dis. 221, S407–S413 (2020).
Google Scholar
Carlson, C. J. et al. The future of zoonotic risk prediction. Phil. Trans. R. Soc. B Biol. Sci. 376, 20200358 (2021).
Ge, X.-Y. et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 503, 535–538 (2013).
Google Scholar
Menachery, V. D. et al. A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence. Nat. Med. 21, 1508–1513 (2015).
Google Scholar
Guan, Y. et al. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science 302, 276–278 (2003).
Google Scholar
Woo, P. C. Y. et al. Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J. Virol. 79, 884–895 (2005).
Google Scholar
Li, W. et al. Bats are natural reservoirs of SARS-like coronaviruses. Science 310, 676–679 (2005).
Google Scholar
Wang, M. et al. SARS-CoV infection in a restaurant from palm civet. Emerg. Infect. Dis. 11, 1860–1865 (2005).
Google Scholar
Hu, B. et al. Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLoS Pathog. 13, e1006698 (2017).
Google Scholar
Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273 (2020).
Google Scholar
Xiao, K. et al. Isolation of SARS-CoV-2-related coronavirus from Malayan pangolins. Nature 583, 286–289 (2020).
Google Scholar
Lam, T.-Y. et al. Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins. Nature 583, 282–285 (2020).
Google Scholar
Wacharapluesadee, S. et al. Evidence for SARS-CoV-2 related coronaviruses circulating in bats and pangolins in Southeast Asia. Nat. Commun. 12, 972 (2021).
Google Scholar
Holmes, E. C. et al. The origins of SARS-CoV-2: a critical review. Cell 184, 4848–4856 (2021).
Google Scholar
Oude Munnink, B. B. et al. Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans. Science 371, 172–177 (2021).
Google Scholar
Chandler, J. C. et al. SARS-CoV-2 exposure in wild white-tailed deer (Odocoileus virginianus). Proc. Natl Acad. Sci. USA 118, e2114828118 (2021).
Google Scholar
Jia, P., Dai, S., Wu, T. & Yang, S. New approaches to anticipate the risk of reverse zoonosis. Trends Ecol. Evol. 36, 580–590 (2021).
Google Scholar
Lednicky, J. A. et al. Isolation of a novel recombinant canine coronavirus from a visitor to Haiti: further evidence of transmission of coronaviruses of zoonotic origin to humans. Clin. Infect. Dis. https://doi.org/10.1093/cid/ciab924 (2021).
Vlasova, A. N. et al. Novel canine coronavirus isolated from a hospitalized pneumonia patient, East Malaysia. Clin. Infect. Dis. https://doi.org/10.1093/cid/ciab456 (2021).
Lednicky, J. A. et al. Emergence of porcine delta-coronavirus pathogenic infections among children in Haiti through independent zoonoses and convergent evolution. Preprint at medRxiv https://doi.org/10.1101/2021.03.19.21253391 (2021).
Hay, A. J. & McCauley, J. W. The WHO global influenza surveillance and response system (GISRS)—a future perspective. Influenza Other Respir. Viruses 12, 551–557 (2018).
Google Scholar
Subbarao, K. et al. Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness. Science 279, 393–396 (1998).
Google Scholar
Kandeel, A. et al. Zoonotic transmission of avian influenza virus (H5N1), Egypt, 2006–2009. Emerg. Infect. Dis. 16, 1101 (2010).
Google Scholar
Ke, C. et al. Human infection with highly pathogenic avian influenza A (H7N9) virus, China. Emerg. Infect. Dis. 23, 1332 (2017).
Google Scholar
Gaidet, N. et al. Evidence of infection by H5N2 highly pathogenic avian influenza viruses in healthy wild waterfowl. PLoS Pathog. 4, e1000127 (2008).
Google Scholar
Webster, R. G., Bean, W. J., Gorman, O. T., Chambers, T. M. & Kawaoka, Y. Evolution and ecology of influenza A viruses. Microbiol. Mol. Biol. Rev. 56, 152–179 (1992).
Google Scholar
Pawar, S. D. et al. Avian influenza surveillance reveals presence of low pathogenic avian influenza viruses in poultry during 2009–2011 in the West Bengal State, India. Virol. J. 9, 151 (2012).
Google Scholar
Parry, R., Wille, M., Turnbull, O. M., Geoghegan, J. L. & Holmes, E. C. Divergent influenza-like viruses of amphibians and fish support an ancient evolutionary association. Viruses 12, 1042 (2020).
Google Scholar
Campbell, P. J. et al. The M segment of the 2009 pandemic influenza virus confers increased neuraminidase activity, filamentous morphology, and efficient contact transmissibility to A/Puerto Rico/8/1934-based reassortant viruses. J. Virol. 88, 3802–3814 (2014).
Google Scholar
Carlson, C. Evolutionary surprise, artificial intelligence, and H5N8. The Verena Blog https://www.viralemergence.org/blog/evolutionary-surprise-artificial-intelligence-and-h5n8 (2021).
Wardeh, M., Baylis, M. & Blagrove, M. S. Predicting mammalian hosts in which novel coronaviruses can be generated. Nat. Commun. 12, 780 (2021).
Google Scholar
Crossman, L. C. Leveraging deep learning to simulate coronavirus spike proteins has the potential to predict future zoonotic sequences. Preprint at bioRxiv https://doi.org/10.1101/2020.04.20.046920 (2020).
Source: Ecology - nature.com