Bowman, D. M. J. S. et al. Fire in the Earth system. Science 324, 481–484 (2009).
Google Scholar
Davis, K. T. et al. Wildfires and climate change push low-elevation forests across a critical climate threshold for tree regeneration. Proc. Natl Acad. Sci. USA 116, 6193–6198 (2019).
Google Scholar
Enright, N. J., Fontaine, J. B., Bowman, D. M. J. S., Bradstock, R. A. & Williams, R. J. Interval squeeze: altered fire regimes and demographic responses interact to threaten woody species persistence as climate changes. Front. Ecol. Environ. 13, 265–272 (2015).
Google Scholar
Abatzoglou, J. T. & Williams, A. P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl Acad. Sci. USA 113, 11770–11775 (2016).
Google Scholar
Bowman, D. M. J. S. et al. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 1, 500–515 (2020).
Google Scholar
Keeley, J. E., van Mantgem, P. & Falk, D. A. Fire, climate and changing forests. Nat. Plants 5, 774–775 (2019).
Google Scholar
Lindenmayer, D. B., Kooyman, R. M., Taylor, C., Ward, M. & Watson, J. E. Recent Australian wildfires made worse by logging and associated forest management. Nat. Ecol. Evol. 4, 898–900 (2020).
Google Scholar
Murphy, B. P. et al. Fire regimes of Australia: a pyrogeographic model system. J. Biogeogr. 40, 1048–1058 (2013).
Google Scholar
Poulos, H. M., Barton, A. M., Slingsby, J. A. & Bowman, D. M. J. S. Do mixed fire regimes shape plant flammability and post-fire recovery strategies? Fire 1, 39 (2018).
Google Scholar
Cawson, J. G. et al. Exploring the key drivers of forest flammability in wet eucalypt forests using expert-derived conceptual models. Landsc. Ecol. 35, 1775–1798 (2020).
Google Scholar
Thomas, P. B., Watson, P. J., Bradstock, R. A., Penman, T. D. & Price, O. Modelling surface fine fuel dynamics across climate gradients in eucalypt forests of south‐eastern Australia. Ecography 37, 827–837 (2014).
Google Scholar
Bennett, L. T. et al. Mortality and recruitment of fire-tolerant eucalypts as influenced by wildfire severity and recent prescribed fire. For. Ecol. Manag. 380, 107–117 (2016).
Google Scholar
Fairman, T. A., Bennett, L. T., Tupper, S. & Nitschke, C. R. Frequent wildfires erode tree persistence and alter stand structure and initial composition of a fire‐tolerant sub‐alpine forest. J. Veg. Sci. 28, 1151–1165 (2017).
Google Scholar
Prior, L. D., Williamson, G. J. & Bowman, D. M. J. S. Impact of high-severity fire in a Tasmanian dry eucalypt forest. Aust. J. Bot. 64, 193–205 (2016).
Google Scholar
Bassett, O. D., Prior, L. D., Slijkerman, C. M., Jamieson, D. & Bowman, D. M. J. S. Aerial sowing stopped the loss of alpine ash (Eucalyptus delegatensis) forests burnt by three short-interval fires in the Alpine National Park, Victoria, Australia. For. Ecol. Manag. 342, 39–48 (2015).
Google Scholar
Bowman, D. et al. Wildfires: Australia needs national monitoring agency. Nature 584, 188–191 (2020).
Google Scholar
King, A. D., Pitman, A. J., Henley, B. J., Ukkola, A. M. & Brown, J. R. The role of climate variability in Australian drought. Nat. Clim. Change 10, 177–179 (2020).
Google Scholar
Sharples, J. J. et al. Natural hazards in Australia: extreme bushfire. Clim. Change 139, 85–99 (2016).
Google Scholar
Bowman, D. M. J. S., Williamson, G. J., Price, O. F., Ndalila, M. N. & Bradstock, R. A. Australian forests, megafires and the risk of dwindling carbon stocks. Plant, Cell Environ. 44, 347–355 (2020).
Khaykin, S. et al. The 2019/20 Australian wildfires generated a persistent smoke-charged vortex rising up to 35 km altitude. Commun. Earth Environ. 1, 22 (2020).
Google Scholar
Borchers Arriagada, N. et al. Unprecedented smoke-related health burden associated with the 2019–20 bushfires in eastern Australia. Med. J. Aust. 213, 282–283 (2020).
Johnston, F. H. et al. Unprecedented health costs of smoke-related PM2.5 from the 2019–20 Australian megafires. Nat. Sustain. 4, 42–47 (2021).
Google Scholar
Ward, M. et al. Impact of 2019–2020 mega-fires on Australian fauna habitat. Nat. Ecol. Evol. 4, 1321–1326 (2020).
Google Scholar
Bowman, D. M. J. S., Williamson, G. J., Prior, L. D. & Murphy, B. P. The relative importance of intrinsic and extrinsic factors in the decline of obligate seeder forests. Glob. Ecol. Biogeogr. 25, 1166–1172 (2016).
Google Scholar
Povak, N. A., Kane, V. R., Collins, B. M., Lydersen, J. M. & Kane, J. T. Multi-scaled drivers of severity patterns vary across land ownerships for the 2013 Rim Fire, California. Landsc. Ecol. 35, 293–318 (2020).
Google Scholar
Parks, S. A. et al. High-severity fire: evaluating its key drivers and mapping its probability across western US forests. Environ. Res. Lett. 13, 044037 (2018).
Google Scholar
Fang, L., Yang, J., Zu, J., Li, G. & Zhang, J. Quantifying influences and relative importance of fire weather, topography, and vegetation on fire size and fire severity in a Chinese boreal forest landscape. For. Ecol. Manag. 356, 2–12 (2015).
Google Scholar
Thompson, J. R. & Spies, T. A. Vegetation and weather explain variation in crown damage within a large mixed-severity wildfire. For. Ecol. Manag. 258, 1684–1694 (2009).
Google Scholar
Stephens, S. L. et al. Fire and climate change: conserving seasonally dry forests is still possible. Front. Ecol. Environ. 18, 354–360 (2020).
Google Scholar
Dieleman, C. M. et al. Wildfire combustion and carbon stocks in the southern Canadian boreal forest: implications for a warming world. Glob. Change Biol. 26, 6062–6079 (2020).
Google Scholar
Nolan, R. H. et al. Causes and consequences of eastern Australia’s 2019–20 season of mega‐fires. Glob. Change Biol. 26, 1039–1041 (2020).
Boer, M. M., Resco de Dios, V. & Bradstock, R. A. Unprecedented burn area of Australian mega forest fires. Nat. Clim. Change 10, 171–172 (2020).
Google Scholar
van Oldenborgh, G. J. et al. Attribution of the Australian bushfire risk to anthropogenic climate change. Nat. Hazards Earth Syst. Sci. 21, 941–960 (2021).
Google Scholar
Adams, M. A., Shadmanroodposhti, M. & Neumann, M. Letter to the Editor. Causes and consequences of Eastern Australia’s 2019‐20 season of mega‐fires: a broader perspective. Glob. Change Biol. 26, 3756–3758 (2020).
Lindenmayer, D. B. & Taylor, C. New spatial analyses of Australian wildfires highlight the need for new fire, resource, and conservation policies. Proc. Natl Acad. Sci. USA 117, 12481–12485 (2020).
Google Scholar
Lindenmayer, D. B., Hobbs, R. J., Likens, G. E., Krebs, C. J. & Banks, S. C. Newly discovered landscape traps produce regime shifts in wet forests. Proc. Natl Acad. Sci. USA 108, 15887–15891 (2011).
Google Scholar
Taylor, C., McCarthy, M. A. & Lindenmayer, D. B. Nonlinear effects of stand age on fire severity. Conserv. Lett. 7, 355–370 (2014).
Google Scholar
Collins, L., Griffioen, P., Newell, G. & Mellor, A. The utility of Random Forests for wildfire severity mapping. Remote Sens. Environ. 216, 374–384 (2018).
Google Scholar
Gibson, R., Danaher, T., Hehir, W. & Collins, L. A remote sensing approach to mapping fire severity in south-eastern Australia using sentinel 2 and random forest. Remote Sens. Environ. 240, 111702 (2020).
Google Scholar
Collins, L., Bradstock, R. & Penman, T. Can precipitation influence landscape controls on wildfire severity? A case study within temperate eucalypt forests of south-eastern Australia. Int. J. Wildland Fire 23, 9–20 (2014).
Google Scholar
Price, O. F. & Bradstock, R. A. The efficacy of fuel treatment in mitigating property loss during wildfires: insights from analysis of the severity of the catastrophic fires in 2009 in Victoria, Australia. J. Environ. Manag. 113, 146–157 (2012).
Google Scholar
Storey, M., Price, O. & Tasker, E. The role of weather, past fire and topography in crown fire occurrence in eastern Australia. Int. J. Wildland Fire 25, 1048–1060 (2016).
Google Scholar
Bradstock, R. A., Hammill, K. A., Collins, L. & Price, O. Effects of weather, fuel and terrain on fire severity in topographically diverse landscapes of south-eastern Australia. Landsc. Ecol. 25, 607–619 (2010).
Google Scholar
Taylor, C., Blanchard, W. & Lindenmayer, D. B. Does forest thinning reduce fire severity in Australian eucalypt forests? Conserv. Lett. https://doi.org/10.1111/conl.12766 (2020).
Lydersen, J. M. et al. Evidence of fuels management and fire weather influencing fire severity in an extreme fire event. Ecol. Appl. 27, 2013–2030 (2017).
Google Scholar
Gómez-González, S., Ojeda, F. & Fernandes, P. M. Portugal and Chile: longing for sustainable forestry while rising from the ashes. Environ. Sci. Policy 81, 104–107 (2018).
Google Scholar
Bowman, D. M. J. S. et al. Human–environmental drivers and impacts of the globally extreme 2017 Chilean fires. Ambio 48, 350–362 (2019).
Google Scholar
Jackson, W. Fire, air, water and earth–an elemental ecology of Tasmania. Proc. Ecol. Soc. Aust. 3, 9–16 (1968).
Tolhurst, K. G. & McCarthy, G. Effect of prescribed burning on wildfire severity: a landscape-scale case study from the 2003 fires in Victoria. Aust. For. 79, 1–14 (2016).
Google Scholar
Gammage, B. The Biggest Estate on Earth: How Aborigines Made Australia (Allen & Unwin, 2011).
Dargavel, J. Views and perspectives: why does Australia have ‘forest wars’? Int. Rev. Environ. Hist. 4, 33–51 (2018).
Google Scholar
Kanowski, P. J. Australia’s forests: contested past, tenure-driven present, uncertain future. For. Policy Econ. 77, 56–68 (2017).
Google Scholar
Australian Forest and Wood Products Statistics Mar-Jun 2019 (Australian Bureau of Agricultural and Resource Economics and Sciences, 2019).
Ferguson, I. Australian plantations: mixed signals ahead. Int. For. Rev. 16, 160–171 (2014).
Raison, R. & Squire, R. Forest Management in Australia: Implications for Carbon Budgets Technical Report 32 (Australian Greenhouse Office, 2008).
Proctor, E. & McCarthy, G. Changes in fuel hazard following thinning operations in mixed-species forests in East Gippsland, Victoria. Aust. For. 78, 195–206 (2015).
Google Scholar
NSW Regional Forest Agreements Assessment of Matters Pertaining to Renewal of Regional Forest Agreements (NSW Department of Primary Industries, 2018).
Evans, J. spatialEco_. R package version 1.3-1 https://github.com/jeffreyevans/spatialEco (2020).
Farr, T. G. et al. The shuttle radar topography mission. Rev. Geophys. https://doi.org/10.1029/2005RG000183 (2007).
Dowdy, A. J. Climatological variability of fire weather in Australia. J. Appl. Meteorol. Climatol. 57, 221–234 (2018).
Google Scholar
Hodges, J. S. & Reich, B. J. Adding spatially-correlated errors can mess up the fixed effect you love. Am. Stat. 64, 325–334 (2010).
Google Scholar
Rabus, B., Eineder, M., Roth, A. & Bamler, R. The shuttle radar topography mission—a new class of digital elevation models acquired by spaceborne radar. ISPRS J. Photogramm. Remote Sens. 57, 241–262 (2003).
Google Scholar
Kuhn, M. et al. caret: Classification and regression training. R package version 6.0-77 (2018).
De Reu, J. et al. Application of the topographic position index to heterogeneous landscapes. Geomorphology 186, 39–49 (2013).
Google Scholar
Source: Ecology - nature.com