in

The Southern Ocean Exchange: porous boundaries between humpback whale breeding populations in southern polar waters

  • 1.

    Clapham, P. J. & Mead, J. G. Sharing the space: Review of humpback whale occurrence in the Amazonian equatorial coast. In: Mammalian Species: Megaptera novaeangliae. American Society of Mammalogists Issue, vol 604, 5 (1999). https://doi.org/10.1016/j.gecco.2019.e00854.

  • 2.

    Rasmussen, K. et al. Southern Hemisphere humpback whales wintering off Central America: Insights from water temperature into the longest mammalian migration. Biol. Lett. 3, 302–305. https://doi.org/10.1098/rsbl.2007.0067 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 3.

    De Weerdt, J., Ramos, E. A. & Cheeseman, T. Northernmost records of Southern Hemisphere humpback whales (Megaptera novaeangliae) migrating from the Antarctic Peninsula to the Pacific coast of Nicaragua. Mar. Mamm. Sci. 36, 1015–1021. https://doi.org/10.1111/mms.12677 (2020).

    Article 

    Google Scholar 

  • 4.

    Mikhalev, Y. A. Humpback whales Megaptera novaeangliae in the Arabian Sea. Mar. Ecol. Prog. Ser. 149, 13–21. https://doi.org/10.3354/meps149013 (1997).

    ADS 
    Article 

    Google Scholar 

  • 5.

    Ristau, N. G. et al. Sharing the space: Review of humpback whale occurrence in the Amazonian Equatorial Coast. Glob. Ecol. Conserv. 22, e00854. https://doi.org/10.1016/j.gecco.2019.e00854 (2020).

    Article 

    Google Scholar 

  • 6.

    Kellogg, R. What is known of the migration of some of the whalebone whales U.S.G.P.O. In Publication Smithsonian Institution, 2997 Rex Nan Kivell Collection, NK5765, 467e494, 2997 (2) leaves of plates (Smithsonian Publication, 1929).

  • 7.

    Clapham, P. J. Humpback whale. In Megaptera novaeangliae. Encyclopedia of Marine Mammals, 3rd edn, 489–492. (Academic Press, 2018). https://doi.org/10.1016/B978-0-12-804327-1.00154-0.

  • 8.

    Chereskin, E. et al. Song structure and singing activity of two separate humpback whales populations wintering off the coast of Caño Island in Costa Rica. J. Acoust. Soc. Am. 146, EL509–EL515 (2020).

    Article 

    Google Scholar 

  • 9.

    Jackson, J. et al. Global diversity and oceanic divergence of humpback whales (Megaptera novaeangliae). Proc. R. Soc. B 281, 20133222. https://doi.org/10.1098/rspb.2013.3222 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    Baker, C. S. et al. Abundant mitochondrial DNA variation and world-wide population structure in humpback whales. Proc. Natl. Acad. Sci. 90, 8239–8243 (1993).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 11.

    Palsbøll, P. J. et al. Distribution of mtDNA haplotypes in North Atlantic humpback whales: The influence of behaviour on population structure. Mar. Ecol. Progr. Ser. 116, 1–10 (1995).

    ADS 
    Article 

    Google Scholar 

  • 12.

    Rosenbaum, H. C. et al. First circumglobal assessment of Southern Hemisphere humpback whale mitochondrial genetic variation and implications for management. Endang. Species Res. 32, 551–567. https://doi.org/10.3354/esr00822 (2017).

    Article 

    Google Scholar 

  • 13.

    Kershaw, F. et al. Multiple processes drive genetic structure of humpback whale (Megaptera novaeangliae) populations across spatial scales. Mol. Ecol. 26, 977–994. https://doi.org/10.1111/mec.13943 (2017).

    Article 
    PubMed 

    Google Scholar 

  • 14.

    Baker, C. S. et al. Strong maternal fidelity and natal philopatry shape genetic structure in North Pacific humpback whales. Mar. Ecol. Progr. Ser. 494, 291–306 (2013).

    ADS 
    Article 

    Google Scholar 

  • 15.

    Garland, E. C. et al. Dynamic horizontal cultural transmission of humpback whale song at the ocean basin scale. Curr. Biol. 21, 687–691. https://doi.org/10.1016/j.cub.2011.03.019 (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 16.

    Garland, E. C. et al. Humpback whale song on the Southern Ocean feeding grounds: Implications for cultural transmission. PLoS ONE 8, 11. https://doi.org/10.1371/journal.pone.0079422 (2013).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Donovan, G. A. Review of IWC stock boundaries. In Report of the International Whaling Commission (Special Issue), vol. 13, 39–68 (1991).

  • 18.

    IWC. JCRM (Supplement), vol. 15, 287–288 (2014).

  • 19.

    Félix, F. & Guzmán, H. M. Satellite tracking and sighting data analyses of Southeast Pacific humpback whales (Megaptera novaeangliae): Is the migratory route coastal or oceanic?. Aquat. Mamm. 40, 329–340. https://doi.org/10.1578/AM.40.4.2014.329 (2014).

    Article 

    Google Scholar 

  • 20.

    Albertson, G. R. et al. Temporal stability and mixed-stock analyses of humpback whales (Megaptera novaeangliae) in the nearshore waters of the Western Antarctic Peninsula. Polar Biol. 41, 323–340. https://doi.org/10.1007/s00300-017-2193-1 (2018).

    Article 

    Google Scholar 

  • 21.

    Acevedo, J. et al. First evidence of interchange of humpback whales (Megaptera novaeangliae) between the Magellan Strait and Antarctic Peninsula feeding grounds. Polar Biol. 44, 613–619. https://doi.org/10.1007/s00300-021-02827-2 (2021).

    Article 

    Google Scholar 

  • 22.

    Andriolo, A., Kinas, P. G., Engel, M. H., Martins, C. C. A. & Rufino, A. M. Humpback whales within the Brazilian breeding ground: Distribution and population size estimate. Endanger. Species Res. 11, 233–243. https://doi.org/10.3354/esr00282 (2010).

    Article 

    Google Scholar 

  • 23.

    Martins, C. C. A., Andriolo, A., Engel, M. H., Kinas, P. G. & Saito, C. H. Identifying priority areas for humpback whale conservation at Eastern Brazilian Coast. Ocean Coast. Manag. 75, 63–71. https://doi.org/10.1016/j.ocecoaman.2013.02.006 (2013).

    Article 

    Google Scholar 

  • 24.

    Dalla Rosa, L. et al. Feeding ground of the eastern South Pacific humpback whale population include the south Orkney island. Polar Res. 31, 17324. https://doi.org/10.3402/polar.v31i0.17324 (2012).

    Article 

    Google Scholar 

  • 25.

    Zerbini, A. N. et al. Satellite-monitored movements of humpback whales Megaptera novaeangliae in the southwest Atlantic Ocean. Mar. Ecol. Prog. Ser. 313, 295e304. https://doi.org/10.3354/meps313295 (2006).

    Article 

    Google Scholar 

  • 26.

    Zerbini, A. et al. Migration and summer destinations of humpback whales (Megaptera novaeangliae) in the western South Atlantic Ocean. J. Cetacean Res. Manag. 3, 113–118. https://doi.org/10.47536/jcrm.vi.315 (2011).

    Article 

    Google Scholar 

  • 27.

    Engel, M. H. et al. Mitochondrial DNA diversity of the Southwestern Atlantic humpback whale (Megaptera novaeangliae) breeding area off Brazil, and the potential connections to Antarctic feeding areas. Conserv. Genet. 9, 1253e1262. https://doi.org/10.1007/s10592-007-9453-5 (2008).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Engel, M. H. & Martin, A. R. Feeding grounds of the western South Atlantic humpback whale population. Mar. Mamm. Sci. 25, 964e969. https://doi.org/10.1111/j.1748-7692.2009.00301.x (2009).

    Article 

    Google Scholar 

  • 29.

    IWC. Report of the workshop on the comprehensive assessment of Southern hemisphere humpback whales. J. Cetacean Res. Manag. 1, 1–50 (2011).

  • 30.

    Horton, T., Zerbini, A., Andriolo, A., Danilewicz, D. & Sucunza, F. Multi-decadal humpback whale migratory route fidelity despite oceanographic and geomagnetic change. Front. Mar. Sci. 7, 414. https://doi.org/10.3389/fmars.2020.00414 (2020).

    Article 

    Google Scholar 

  • 31.

    Stevick, P. T. et al. Population spatial structuring on the feeding grounds in North Atlantic humpback whales (Megaptera novaeangliae). J. Zool. 270, 244e255. https://doi.org/10.1111/j.1469-7998.2006.00128.x (2006).

    Article 

    Google Scholar 

  • 32.

    IWC. Report of the scientific committee. Rep. Int. Whal. Commun. 48, 53–118 (1998).

  • 33.

    Cypriano-Souza, A. L. et al. Genetic differentiation between humpback whales (Megaptera novaeangliae) from Atlantic and Pacific breeding grounds of South America. Mar. Mamm. Sci. 33, 457–479. https://doi.org/10.1111/mms.12378 (2017).

    CAS 
    Article 

    Google Scholar 

  • 34.

    IWC. J. Cetacean Res. Manag. (Supplement) 7, 235–246 (2005).

  • 35.

    Dalla Rosa, L., Secchi, E. R., Maia, Y. G., Zerbini, A. N. & Heide-Jørgensen, M. P. Movements of satellite-monitored humpback whales on their feeding ground along the Antarctic Peninsula. Polar Biol. 31, 771–781 (2008).

    Article 

    Google Scholar 

  • 36.

    Bombosch, A. et al. Predictive habitat modelling of humpback (Megaptera novaeangliae) and Antarctic minke (Balaenoptera bonaerensis) whales in the Southern Ocean as a planning tool for seismic surveys. Deep Sea Res. (I Oceanogr. Res. Pap.) 91, 101–114. https://doi.org/10.1016/j.dsr.2014.05.017 (2014).

    ADS 
    Article 

    Google Scholar 

  • 37.

    Stevick, P. et al. Migrations of individually identified humpback whales between the Antarctic Peninsula and South America. J. Cetacean Res. Manag. 6, 109–113 (2004).

    Google Scholar 

  • 38.

    Pomilla, C. & Rosenbaum, H. C. Against the current: An inter-oceanic whale migration event. Biol. Lett. 1, 476–479. https://doi.org/10.1098/rsbl.2005.0351 (2005).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Stevick, P. T. et al. A quarter of a world away: Female humpback whale moves 10 000 km between breeding areas. Biol. Lett. 7, 299–302. https://doi.org/10.1098/rsbl.2010.0717 (2011).

    Article 
    PubMed 

    Google Scholar 

  • 40.

    Stevick, P. T. et al. Inter-oceanic movement of an adult female humpback whale between Pacific and Atlantic breeding grounds off South America. J. Cetacean Res. Manag. 13, 159–162 (2013).

    Google Scholar 

  • 41.

    Félix, F. et al. A new case of interoceanic movement of a humpback whale in the Southern hemisphere: The El Niño link. Aquat. Mamm. 46, 578–583. https://doi.org/10.1578/AM.46.6.2020.578 (2020).

    Article 

    Google Scholar 

  • 42.

    Castro, C. Engel, M., Martin, A. & Kaufman, G. Comparison of humpback whale catalogues between Ecuador, and South Georgia and Sandwich Island: Evidence of increased feeding area I boundary or overlap between feeding areas I and II? Report of the scientific committee. Rep. Int. Whal. Comm. SC/66/SH (2015).

  • 43.

    Cheeseman, T. et al. Advanced image recognition: A fully automated, high-accuracy photo-identification matching system for humpback whales. Mamm. Biol. https://doi.org/10.1007/s42991-021-00180-9 (in press).

  • 44.

    Gura, T. Citizen science: Amateur experts. Nature 496, 259–261. https://doi.org/10.1038/nj7444-259a (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 45.

    Chandler, M. et al. Contribution of citizen science towards international biodiversity monitoring. Biol. Conserv. 213, 280–294. https://doi.org/10.1016/j.biocon.2016.09.004 (2017).

    Article 

    Google Scholar 

  • 46.

    de Sherbinin, A. et al. The critical importance of citizen science data. Front. Clim. 3, 650760. https://doi.org/10.3389/fclim.2021.650760 (2021).

    Article 

    Google Scholar 

  • 47.

    Pallin, L. J., Robbins, J., Kellar, N., Bérubé, M. & Friedlaender, A. Validation of a blubber-based endocrine pregnancy test for humpback whales. Conserv. Physiol. https://doi.org/10.1093/conphys/coy031 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 48.

    Gabriele, C. M., Straley, J. M. & Neilson, J. L. Age at first calving of female humpback whales in Southeastern Alaska. In Proceedings of the Fourth Glacier Bay Science Symposium, October 26–28, 2004: U.S. Geological Survey Scientific Investigations Report (eds. Piatt, J. F. & Gende, S. M.) vol. 2007–5047, 159–162 (2007).

  • 49.

    Baker, C. S. & Medrano-González, L. Worldwide distribution and diversity of humpback whale mitochondrial DNA lineages. In Molecular and Cell Biology of Marine Mammals (ed. Pfeiffer, C. J.) 84–99 (Krieger Publishing Company, 2002).

    Google Scholar 

  • 50.

    Bettridge, S. et al. Status Review of the Humpback Whale (Megaptera novaeangliae) under the Endangered Species Act. NOAA-TM-NMFS-SWFSC-540, ID#4883, 241. https://repository.library.noaa.gov/view/noaa/4883 (2015).

  • 51.

    IWC. Annex H: Report of the sub-committee on other Southern hemisphere whale stocks. J. Cetacean Res. Manag.(Supplement) 17, 250–282 (2016).

  • 52.

    Zerbini, A. et al. Assessing the recovery of an Antarctic predator from historical exploitation. R. Soc. Open Sci. 6, 190368. https://doi.org/10.1098/rsos.190368 (2019).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 53.

    Zerbini, A. N., Clapham, P. J. & Wade, P. R. Assessing plausible rates of population growth in humpback whales from life-history data. Mar. Biol. 157, 1432e1793. https://doi.org/10.1007/s00227-010-1403-y (2010).

    Article 

    Google Scholar 

  • 54.

    Gonçalves, M. I. C. et al. Low latitude habitat use patterns of a recovering population of humpback whales. J. Mar. Biol. Assoc. U. K. 98, 1087–1096. https://doi.org/10.1017/S0025315418000255 (2018).

    Article 

    Google Scholar 

  • 55.

    Riekkola, L. et al. Longer migration not necessarily the costliest strategy for migrating humpback whales. Aquat. Conserv. Mar. Freshw. Ecosyst. 1, 12. https://doi.org/10.1002/aqc.3295 (2020).

    Article 

    Google Scholar 

  • 56.

    Pallin, L. J. et al. High pregnancy rates in humpback whales (Megaptera novaeangliae) around the Western Antarctic Peninsula, evidence of a rapidly growing population. R. Soc. Open Sci. 5, 180017. https://doi.org/10.1098/rsos.180017 (2018).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 57.

    Avila, I. C. et al. Whales extend their stay in a breeding ground in the Tropical Eastern Pacific. ICES J. Mar. Sci. 77, 109–118. https://doi.org/10.1093/icesjms/fsz251 (2020).

    Article 

    Google Scholar 

  • 58.

    Fritsen, C. H., Memmott, J. C. & Stewart, F. J. Inter-annual sea-ice dynamics and micro-algal biomass in winter pack ice of Marguerite Bay, Antarctica. Deep Sea Res II Top. Stud. Oceanogr. 55, 2059–2067. https://doi.org/10.1016/j.dsr2.2008.04.034 (2008).

    ADS 
    Article 

    Google Scholar 

  • 59.

    Meyer, B. The overwintering of Antarctic krill, Euphausia superba, from an ecophysiological perspective. Polar Biol. 35, 15–37. https://doi.org/10.1007/s00300-011-1120-0 (2012).

    Article 

    Google Scholar 

  • 60.

    Seyboth, E. et al. Influence of krill (Euphausia superba) availability on humpback whale (Megaptera novaeangliae) reproductive rate. Mar. Mamm. Sci. https://doi.org/10.1111/mms.12805 (2021).

    Article 

    Google Scholar 

  • 61.

    Atkinson, A. A., Siegel, V., Pakhomov, E. & Rothery, P. Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature 432, 100–103. https://doi.org/10.1038/nature02996 (2004).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 62.

    Atkinson, A. et al. Krill (Euphausia superba) distribution contracts southward during rapid regional warming. Nat. Clim. Change 9, 142–147. https://doi.org/10.1038/s41558-018-0370-z (2019).

    ADS 
    Article 

    Google Scholar 

  • 63.

    Loeb, V. J. & Santora, J. A. Climate variability and spatiotemporal dynamics of five Southern Ocean krill species. Prog. Ocean. 134, 93–122. https://doi.org/10.1016/j.pocean.2015.01.002 (2015).

    Article 

    Google Scholar 

  • 64.

    Forcada, J., Trathan, P. & Murphy, E. J. Life history buffering in Antarctic mammals and birds against changing patterns of climate and environmental variation. Glob. Change Biol. 14, 2473–2488 (2008).

    ADS 
    Article 

    Google Scholar 

  • 65.

    Fielding, S. et al. Interannual variability in Antarctic krill (Euphausia superba) density at South Georgia, Southern Ocean: 1997–2013. ICES J. Mar. Sci. 71, 2578–2588. https://doi.org/10.1093/icesjms/fsu104 (2014).

    MathSciNet 
    Article 

    Google Scholar 

  • 66.

    Wedekin, L. L. et al. Running fast in the slow lane: Rapid population growth of humpback whales after exploitation. Mar. Ecol. Prog. Ser. 575, 195–206. https://doi.org/10.3354/meps12211 (2017).

    ADS 
    Article 

    Google Scholar 

  • 67.

    Rogers, A. D. et al. Antarctic futures: An assessment of climate-driven changes in ecosystem structure, function, and service provisioning in the Southern Ocean. Ann. Rev. Mar. Sci. 12, 87–120. https://doi.org/10.1146/annurev-marine-010419-011028 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 68.

    Glockner, D. A. & Venus, S. Determining the sex of humpback whales (Megaptera novaeangliae) in their natural environment. In Behavior and Communication of Whales. (Westview Press, 1983).

  • 69.

    Darling, J. D. & Berubé, M. Interactions of singing humpback whales with other males. Mar. Mamm. Sci. 17, 570–584. https://doi.org/10.1111/j.1748-7692.2001.tb01005.x (2001).

    Article 

    Google Scholar 

  • 70.

    Noad, M. J., Cato, D. H., Bryden, M. M., Jenner, M. N. & Jenner, K. C. S. Cultural revolution in whale songs. Nature 408, 537–537 (2000).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 71.

    Darling, D. J. & Sousa-Lima, R. S. Songs indicate interaction between humpback whale (Megaptera novaeangliae) populations in western and eastern South Atlantic Ocean. Mar. Mamm. Sci. 21, 557–566. https://doi.org/10.1111/j.1748-7692.2005.tb01249.x (2006).

    Article 

    Google Scholar 

  • 72.

    McKnight, A., Allyn, A. J., Duffy, D. C. & Irons, D. B. ‘Stepping stone’ pattern in Pacific Arctic tern migration reveals the importance of upwelling areas. Mar. Ecol. Prog. Ser. 491, 253–264. https://doi.org/10.3354/meps10469 (2013).

    ADS 
    Article 

    Google Scholar 

  • 73.

    Groch, K. R. et al. Cetacean morbilivirus in humpback whale’s exhaled breath. Transbound. Emerg. Dis. https://doi.org/10.1111/tbed.13883 (2020).

    Article 
    PubMed 

    Google Scholar 

  • 74.

    Ballance, L. T. Contributions of photographs to cetacean science. Aquat. Mamm. 44, 668–682 (2018).

    Article 

    Google Scholar 

  • 75.

    Kosmala, M., Wiggins, A., Swanson, A. & Simmons, B. Assessing data quality in citizen science. Front. Ecol. Environ. 14, 551–560. https://doi.org/10.1002/fee.1436 (2016).

    Article 

    Google Scholar 

  • 76.

    Vieira, E. A., Souza, L. R. & Longo, G. O. Diving into science and conservation: Recreational divers can monitor reef assemblages. Perspect. Ecol. Conserv. 18, 51–59. https://doi.org/10.1016/j.pecon.2019.12.001 (2020).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Q&A: More-sustainable concrete with machine learning

    Krill and salp faecal pellets contribute equally to the carbon flux at the Antarctic Peninsula