Clapham, P. J. & Mead, J. G. Sharing the space: Review of humpback whale occurrence in the Amazonian equatorial coast. In: Mammalian Species: Megaptera novaeangliae. American Society of Mammalogists Issue, vol 604, 5 (1999). https://doi.org/10.1016/j.gecco.2019.e00854.
Rasmussen, K. et al. Southern Hemisphere humpback whales wintering off Central America: Insights from water temperature into the longest mammalian migration. Biol. Lett. 3, 302–305. https://doi.org/10.1098/rsbl.2007.0067 (2007).
Google Scholar
De Weerdt, J., Ramos, E. A. & Cheeseman, T. Northernmost records of Southern Hemisphere humpback whales (Megaptera novaeangliae) migrating from the Antarctic Peninsula to the Pacific coast of Nicaragua. Mar. Mamm. Sci. 36, 1015–1021. https://doi.org/10.1111/mms.12677 (2020).
Google Scholar
Mikhalev, Y. A. Humpback whales Megaptera novaeangliae in the Arabian Sea. Mar. Ecol. Prog. Ser. 149, 13–21. https://doi.org/10.3354/meps149013 (1997).
Google Scholar
Ristau, N. G. et al. Sharing the space: Review of humpback whale occurrence in the Amazonian Equatorial Coast. Glob. Ecol. Conserv. 22, e00854. https://doi.org/10.1016/j.gecco.2019.e00854 (2020).
Google Scholar
Kellogg, R. What is known of the migration of some of the whalebone whales U.S.G.P.O. In Publication Smithsonian Institution, 2997 Rex Nan Kivell Collection, NK5765, 467e494, 2997 (2) leaves of plates (Smithsonian Publication, 1929).
Clapham, P. J. Humpback whale. In Megaptera novaeangliae. Encyclopedia of Marine Mammals, 3rd edn, 489–492. (Academic Press, 2018). https://doi.org/10.1016/B978-0-12-804327-1.00154-0.
Chereskin, E. et al. Song structure and singing activity of two separate humpback whales populations wintering off the coast of Caño Island in Costa Rica. J. Acoust. Soc. Am. 146, EL509–EL515 (2020).
Google Scholar
Jackson, J. et al. Global diversity and oceanic divergence of humpback whales (Megaptera novaeangliae). Proc. R. Soc. B 281, 20133222. https://doi.org/10.1098/rspb.2013.3222 (2014).
Google Scholar
Baker, C. S. et al. Abundant mitochondrial DNA variation and world-wide population structure in humpback whales. Proc. Natl. Acad. Sci. 90, 8239–8243 (1993).
Google Scholar
Palsbøll, P. J. et al. Distribution of mtDNA haplotypes in North Atlantic humpback whales: The influence of behaviour on population structure. Mar. Ecol. Progr. Ser. 116, 1–10 (1995).
Google Scholar
Rosenbaum, H. C. et al. First circumglobal assessment of Southern Hemisphere humpback whale mitochondrial genetic variation and implications for management. Endang. Species Res. 32, 551–567. https://doi.org/10.3354/esr00822 (2017).
Google Scholar
Kershaw, F. et al. Multiple processes drive genetic structure of humpback whale (Megaptera novaeangliae) populations across spatial scales. Mol. Ecol. 26, 977–994. https://doi.org/10.1111/mec.13943 (2017).
Google Scholar
Baker, C. S. et al. Strong maternal fidelity and natal philopatry shape genetic structure in North Pacific humpback whales. Mar. Ecol. Progr. Ser. 494, 291–306 (2013).
Google Scholar
Garland, E. C. et al. Dynamic horizontal cultural transmission of humpback whale song at the ocean basin scale. Curr. Biol. 21, 687–691. https://doi.org/10.1016/j.cub.2011.03.019 (2011).
Google Scholar
Garland, E. C. et al. Humpback whale song on the Southern Ocean feeding grounds: Implications for cultural transmission. PLoS ONE 8, 11. https://doi.org/10.1371/journal.pone.0079422 (2013).
Google Scholar
Donovan, G. A. Review of IWC stock boundaries. In Report of the International Whaling Commission (Special Issue), vol. 13, 39–68 (1991).
IWC. JCRM (Supplement), vol. 15, 287–288 (2014).
Félix, F. & Guzmán, H. M. Satellite tracking and sighting data analyses of Southeast Pacific humpback whales (Megaptera novaeangliae): Is the migratory route coastal or oceanic?. Aquat. Mamm. 40, 329–340. https://doi.org/10.1578/AM.40.4.2014.329 (2014).
Google Scholar
Albertson, G. R. et al. Temporal stability and mixed-stock analyses of humpback whales (Megaptera novaeangliae) in the nearshore waters of the Western Antarctic Peninsula. Polar Biol. 41, 323–340. https://doi.org/10.1007/s00300-017-2193-1 (2018).
Google Scholar
Acevedo, J. et al. First evidence of interchange of humpback whales (Megaptera novaeangliae) between the Magellan Strait and Antarctic Peninsula feeding grounds. Polar Biol. 44, 613–619. https://doi.org/10.1007/s00300-021-02827-2 (2021).
Google Scholar
Andriolo, A., Kinas, P. G., Engel, M. H., Martins, C. C. A. & Rufino, A. M. Humpback whales within the Brazilian breeding ground: Distribution and population size estimate. Endanger. Species Res. 11, 233–243. https://doi.org/10.3354/esr00282 (2010).
Google Scholar
Martins, C. C. A., Andriolo, A., Engel, M. H., Kinas, P. G. & Saito, C. H. Identifying priority areas for humpback whale conservation at Eastern Brazilian Coast. Ocean Coast. Manag. 75, 63–71. https://doi.org/10.1016/j.ocecoaman.2013.02.006 (2013).
Google Scholar
Dalla Rosa, L. et al. Feeding ground of the eastern South Pacific humpback whale population include the south Orkney island. Polar Res. 31, 17324. https://doi.org/10.3402/polar.v31i0.17324 (2012).
Google Scholar
Zerbini, A. N. et al. Satellite-monitored movements of humpback whales Megaptera novaeangliae in the southwest Atlantic Ocean. Mar. Ecol. Prog. Ser. 313, 295e304. https://doi.org/10.3354/meps313295 (2006).
Google Scholar
Zerbini, A. et al. Migration and summer destinations of humpback whales (Megaptera novaeangliae) in the western South Atlantic Ocean. J. Cetacean Res. Manag. 3, 113–118. https://doi.org/10.47536/jcrm.vi.315 (2011).
Google Scholar
Engel, M. H. et al. Mitochondrial DNA diversity of the Southwestern Atlantic humpback whale (Megaptera novaeangliae) breeding area off Brazil, and the potential connections to Antarctic feeding areas. Conserv. Genet. 9, 1253e1262. https://doi.org/10.1007/s10592-007-9453-5 (2008).
Google Scholar
Engel, M. H. & Martin, A. R. Feeding grounds of the western South Atlantic humpback whale population. Mar. Mamm. Sci. 25, 964e969. https://doi.org/10.1111/j.1748-7692.2009.00301.x (2009).
Google Scholar
IWC. Report of the workshop on the comprehensive assessment of Southern hemisphere humpback whales. J. Cetacean Res. Manag. 1, 1–50 (2011).
Horton, T., Zerbini, A., Andriolo, A., Danilewicz, D. & Sucunza, F. Multi-decadal humpback whale migratory route fidelity despite oceanographic and geomagnetic change. Front. Mar. Sci. 7, 414. https://doi.org/10.3389/fmars.2020.00414 (2020).
Google Scholar
Stevick, P. T. et al. Population spatial structuring on the feeding grounds in North Atlantic humpback whales (Megaptera novaeangliae). J. Zool. 270, 244e255. https://doi.org/10.1111/j.1469-7998.2006.00128.x (2006).
Google Scholar
IWC. Report of the scientific committee. Rep. Int. Whal. Commun. 48, 53–118 (1998).
Cypriano-Souza, A. L. et al. Genetic differentiation between humpback whales (Megaptera novaeangliae) from Atlantic and Pacific breeding grounds of South America. Mar. Mamm. Sci. 33, 457–479. https://doi.org/10.1111/mms.12378 (2017).
Google Scholar
IWC. J. Cetacean Res. Manag. (Supplement) 7, 235–246 (2005).
Dalla Rosa, L., Secchi, E. R., Maia, Y. G., Zerbini, A. N. & Heide-Jørgensen, M. P. Movements of satellite-monitored humpback whales on their feeding ground along the Antarctic Peninsula. Polar Biol. 31, 771–781 (2008).
Google Scholar
Bombosch, A. et al. Predictive habitat modelling of humpback (Megaptera novaeangliae) and Antarctic minke (Balaenoptera bonaerensis) whales in the Southern Ocean as a planning tool for seismic surveys. Deep Sea Res. (I Oceanogr. Res. Pap.) 91, 101–114. https://doi.org/10.1016/j.dsr.2014.05.017 (2014).
Google Scholar
Stevick, P. et al. Migrations of individually identified humpback whales between the Antarctic Peninsula and South America. J. Cetacean Res. Manag. 6, 109–113 (2004).
Pomilla, C. & Rosenbaum, H. C. Against the current: An inter-oceanic whale migration event. Biol. Lett. 1, 476–479. https://doi.org/10.1098/rsbl.2005.0351 (2005).
Google Scholar
Stevick, P. T. et al. A quarter of a world away: Female humpback whale moves 10 000 km between breeding areas. Biol. Lett. 7, 299–302. https://doi.org/10.1098/rsbl.2010.0717 (2011).
Google Scholar
Stevick, P. T. et al. Inter-oceanic movement of an adult female humpback whale between Pacific and Atlantic breeding grounds off South America. J. Cetacean Res. Manag. 13, 159–162 (2013).
Félix, F. et al. A new case of interoceanic movement of a humpback whale in the Southern hemisphere: The El Niño link. Aquat. Mamm. 46, 578–583. https://doi.org/10.1578/AM.46.6.2020.578 (2020).
Google Scholar
Castro, C. Engel, M., Martin, A. & Kaufman, G. Comparison of humpback whale catalogues between Ecuador, and South Georgia and Sandwich Island: Evidence of increased feeding area I boundary or overlap between feeding areas I and II? Report of the scientific committee. Rep. Int. Whal. Comm. SC/66/SH (2015).
Cheeseman, T. et al. Advanced image recognition: A fully automated, high-accuracy photo-identification matching system for humpback whales. Mamm. Biol. https://doi.org/10.1007/s42991-021-00180-9 (in press).
Gura, T. Citizen science: Amateur experts. Nature 496, 259–261. https://doi.org/10.1038/nj7444-259a (2013).
Google Scholar
Chandler, M. et al. Contribution of citizen science towards international biodiversity monitoring. Biol. Conserv. 213, 280–294. https://doi.org/10.1016/j.biocon.2016.09.004 (2017).
Google Scholar
de Sherbinin, A. et al. The critical importance of citizen science data. Front. Clim. 3, 650760. https://doi.org/10.3389/fclim.2021.650760 (2021).
Google Scholar
Pallin, L. J., Robbins, J., Kellar, N., Bérubé, M. & Friedlaender, A. Validation of a blubber-based endocrine pregnancy test for humpback whales. Conserv. Physiol. https://doi.org/10.1093/conphys/coy031 (2018).
Google Scholar
Gabriele, C. M., Straley, J. M. & Neilson, J. L. Age at first calving of female humpback whales in Southeastern Alaska. In Proceedings of the Fourth Glacier Bay Science Symposium, October 26–28, 2004: U.S. Geological Survey Scientific Investigations Report (eds. Piatt, J. F. & Gende, S. M.) vol. 2007–5047, 159–162 (2007).
Baker, C. S. & Medrano-González, L. Worldwide distribution and diversity of humpback whale mitochondrial DNA lineages. In Molecular and Cell Biology of Marine Mammals (ed. Pfeiffer, C. J.) 84–99 (Krieger Publishing Company, 2002).
Bettridge, S. et al. Status Review of the Humpback Whale (Megaptera novaeangliae) under the Endangered Species Act. NOAA-TM-NMFS-SWFSC-540, ID#4883, 241. https://repository.library.noaa.gov/view/noaa/4883 (2015).
IWC. Annex H: Report of the sub-committee on other Southern hemisphere whale stocks. J. Cetacean Res. Manag.(Supplement) 17, 250–282 (2016).
Zerbini, A. et al. Assessing the recovery of an Antarctic predator from historical exploitation. R. Soc. Open Sci. 6, 190368. https://doi.org/10.1098/rsos.190368 (2019).
Google Scholar
Zerbini, A. N., Clapham, P. J. & Wade, P. R. Assessing plausible rates of population growth in humpback whales from life-history data. Mar. Biol. 157, 1432e1793. https://doi.org/10.1007/s00227-010-1403-y (2010).
Google Scholar
Gonçalves, M. I. C. et al. Low latitude habitat use patterns of a recovering population of humpback whales. J. Mar. Biol. Assoc. U. K. 98, 1087–1096. https://doi.org/10.1017/S0025315418000255 (2018).
Google Scholar
Riekkola, L. et al. Longer migration not necessarily the costliest strategy for migrating humpback whales. Aquat. Conserv. Mar. Freshw. Ecosyst. 1, 12. https://doi.org/10.1002/aqc.3295 (2020).
Google Scholar
Pallin, L. J. et al. High pregnancy rates in humpback whales (Megaptera novaeangliae) around the Western Antarctic Peninsula, evidence of a rapidly growing population. R. Soc. Open Sci. 5, 180017. https://doi.org/10.1098/rsos.180017 (2018).
Google Scholar
Avila, I. C. et al. Whales extend their stay in a breeding ground in the Tropical Eastern Pacific. ICES J. Mar. Sci. 77, 109–118. https://doi.org/10.1093/icesjms/fsz251 (2020).
Google Scholar
Fritsen, C. H., Memmott, J. C. & Stewart, F. J. Inter-annual sea-ice dynamics and micro-algal biomass in winter pack ice of Marguerite Bay, Antarctica. Deep Sea Res II Top. Stud. Oceanogr. 55, 2059–2067. https://doi.org/10.1016/j.dsr2.2008.04.034 (2008).
Google Scholar
Meyer, B. The overwintering of Antarctic krill, Euphausia superba, from an ecophysiological perspective. Polar Biol. 35, 15–37. https://doi.org/10.1007/s00300-011-1120-0 (2012).
Google Scholar
Seyboth, E. et al. Influence of krill (Euphausia superba) availability on humpback whale (Megaptera novaeangliae) reproductive rate. Mar. Mamm. Sci. https://doi.org/10.1111/mms.12805 (2021).
Google Scholar
Atkinson, A. A., Siegel, V., Pakhomov, E. & Rothery, P. Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature 432, 100–103. https://doi.org/10.1038/nature02996 (2004).
Google Scholar
Atkinson, A. et al. Krill (Euphausia superba) distribution contracts southward during rapid regional warming. Nat. Clim. Change 9, 142–147. https://doi.org/10.1038/s41558-018-0370-z (2019).
Google Scholar
Loeb, V. J. & Santora, J. A. Climate variability and spatiotemporal dynamics of five Southern Ocean krill species. Prog. Ocean. 134, 93–122. https://doi.org/10.1016/j.pocean.2015.01.002 (2015).
Google Scholar
Forcada, J., Trathan, P. & Murphy, E. J. Life history buffering in Antarctic mammals and birds against changing patterns of climate and environmental variation. Glob. Change Biol. 14, 2473–2488 (2008).
Google Scholar
Fielding, S. et al. Interannual variability in Antarctic krill (Euphausia superba) density at South Georgia, Southern Ocean: 1997–2013. ICES J. Mar. Sci. 71, 2578–2588. https://doi.org/10.1093/icesjms/fsu104 (2014).
Google Scholar
Wedekin, L. L. et al. Running fast in the slow lane: Rapid population growth of humpback whales after exploitation. Mar. Ecol. Prog. Ser. 575, 195–206. https://doi.org/10.3354/meps12211 (2017).
Google Scholar
Rogers, A. D. et al. Antarctic futures: An assessment of climate-driven changes in ecosystem structure, function, and service provisioning in the Southern Ocean. Ann. Rev. Mar. Sci. 12, 87–120. https://doi.org/10.1146/annurev-marine-010419-011028 (2020).
Google Scholar
Glockner, D. A. & Venus, S. Determining the sex of humpback whales (Megaptera novaeangliae) in their natural environment. In Behavior and Communication of Whales. (Westview Press, 1983).
Darling, J. D. & Berubé, M. Interactions of singing humpback whales with other males. Mar. Mamm. Sci. 17, 570–584. https://doi.org/10.1111/j.1748-7692.2001.tb01005.x (2001).
Google Scholar
Noad, M. J., Cato, D. H., Bryden, M. M., Jenner, M. N. & Jenner, K. C. S. Cultural revolution in whale songs. Nature 408, 537–537 (2000).
Google Scholar
Darling, D. J. & Sousa-Lima, R. S. Songs indicate interaction between humpback whale (Megaptera novaeangliae) populations in western and eastern South Atlantic Ocean. Mar. Mamm. Sci. 21, 557–566. https://doi.org/10.1111/j.1748-7692.2005.tb01249.x (2006).
Google Scholar
McKnight, A., Allyn, A. J., Duffy, D. C. & Irons, D. B. ‘Stepping stone’ pattern in Pacific Arctic tern migration reveals the importance of upwelling areas. Mar. Ecol. Prog. Ser. 491, 253–264. https://doi.org/10.3354/meps10469 (2013).
Google Scholar
Groch, K. R. et al. Cetacean morbilivirus in humpback whale’s exhaled breath. Transbound. Emerg. Dis. https://doi.org/10.1111/tbed.13883 (2020).
Google Scholar
Ballance, L. T. Contributions of photographs to cetacean science. Aquat. Mamm. 44, 668–682 (2018).
Google Scholar
Kosmala, M., Wiggins, A., Swanson, A. & Simmons, B. Assessing data quality in citizen science. Front. Ecol. Environ. 14, 551–560. https://doi.org/10.1002/fee.1436 (2016).
Google Scholar
Vieira, E. A., Souza, L. R. & Longo, G. O. Diving into science and conservation: Recreational divers can monitor reef assemblages. Perspect. Ecol. Conserv. 18, 51–59. https://doi.org/10.1016/j.pecon.2019.12.001 (2020).
Google Scholar
Source: Ecology - nature.com