Heinze, C. et al. The quiet crossing of ocean tipping points. Proc. Natl. Acad. Sci. 118, e2008478118 (2021).
Google Scholar
Dakos, V. et al. Ecosystem tipping points in an evolving world. Nat. Ecol. Evol. 3, 355–362 (2019).
Google Scholar
Myers, R., Hutchings, J. & Barrowman, N. Hypotheses for the decline of cod in the North Atlantic. Mar. Ecol. Prog. Ser. 138, 293–308 (1996).
Google Scholar
Sguotti, C. et al. Catastrophic dynamics limit Atlantic cod recovery. Proc. R. Soc. B Biol. Sci. 286, 20182877 (2019).
Google Scholar
Levin, P. S. & Möllmann, C. Marine ecosystem regime shifts: Challenges and opportunities for ecosystem-based management. Philos. Trans. R. Soc. B Biol. Sci. 370, 20130275 (2015).
Google Scholar
King, J. R., Mcfarlane, G. A. & Punt, A. E. Shifts in fisheries management: Adapting to regime shifts. Philos. Trans. R. Soc. B Biol. Sci. 370, 20130277 (2015).
Google Scholar
Döring, R., Berkenhagen, J., Hentsch, S. & Kraus, G. Small-Scale Fisheries in Germany: A Disappearing Profession? In Small-Scale Fisheries in Europe: Status, Resilience and Governance (eds. Pascual-Fernández, J. J., Pita, C. & Bavinck, M.) vol. 23 483–502 (Springer International Publishing, 2020).
Papaioannou, E. A., Vafeidis, A. T., Quaas, M. F., Schmidt, J. O. & Strehlow, H. V. Using indicators based on primary fisheries’ data for assessing the development of the German Baltic small-scale fishery and reviewing its adaptation potential to changes in resource abundance and management during 2000–09. Ocean Coast. Manag. 98, 38–50 (2014).
Google Scholar
EU. Regulation (EU) 2016/1139 of the European Parliament and of the Council of 6 July 2016 establishing a multiannual plan for the stocks of cod, herring and sprat in the Baltic Sea and the fisheries exploiting those stocks, amending Council Regulation (EC) No 2187/2005 and repealing Council Regulation (EC) No 1098/2007. (2016).
Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).
Google Scholar
Lenton, T. M. Environmental tipping points. Annu. Rev. Environ. Resour. 38, 1–29 (2013).
Google Scholar
Möllmann, C., Folke, C., Edwards, M. & Conversi, A. Marine regime shifts around the globe: Theory, drivers and impacts. Philos. Trans. R. Soc. B Biol. Sci. 370, 20130260 (2015).
Google Scholar
ICES. Advice cod in subdivisions 22–24, western Baltic stock (western Baltic Sea). (2019) https://doi.org/10.17895/ICES.ADVICE.5587.
Conversi, A. et al. A holistic view of marine regime shifts. Philos. Trans. R. Soc. B Biol. Sci. 370, 20130279 (2015).
Google Scholar
Ratajczak, Z. et al. Abrupt change in ecological systems: Inference and diagnosis. Trends Ecol. Evol. 33, 513–526 (2018).
Google Scholar
Turner, M. G. et al. Climate change, ecosystems and abrupt change: Science priorities. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190105 (2020).
Google Scholar
Scheffer, M. & Carpenter, S. R. Catastrophic regime shifts in ecosystems: Linking theory to observation. Trends Ecol. Evol. 18, 648–656 (2003).
Google Scholar
Beisner, B., Haydon, D. & Cuddington, K. Alternative stable states in ecology. Front. Ecol. Environ. 1, 376–382 (2003).
Google Scholar
Subbey, S., Devine, J. A., Schaarschmidt, U. & Nash, R. D. Modelling and forecasting stock–recruitment: Current and future perspectives. ICES J. Mar. Sci. 71, 2307–2322 (2014).
Google Scholar
Grasman, R. P. P. P., Maas, H. L. J. van der & Wagenmakers, E.-J. Fitting the Cusp Catastrophe in r : A cusp Package Primer. J. Stat. Softw. 32, 1-27 (2009).
Thom, R. Structural Stability and Morphogenesis—An Outline of a General Theory of Models (Benjamin Inc, 1975).
Google Scholar
Zeeman, E. Catastrophe theory. Sci. Am. 234, 65–83 (1976).
Google Scholar
Barunik, J. & Vosvrda, M. Can a stochastic cusp catastrophe model explain stock market crashes?. J. Econ. Dyn. Control 33, 1824–1836 (2009).
Google Scholar
Xiaoping, Z., Jiahui, S. & Yuan, C. Analysis of crowd jam in public buildings based on cusp-catastrophe theory. Build. Environ. 45, 1755–1761 (2010).
Google Scholar
Guastello, S. J., Boeh, H., Shumaker, C. & Schimmels, M. Catastrophe models for cognitive workload and fatigue. Theor. Issues Ergon. Sci. 13, 586–602 (2012).
Google Scholar
Angelis, V., Angelis-Dimakis, A. & Dimaki, K. The Cusp Catastrophe model in describing a bank’s attractiveness as measured by its image. Proc. Econ. Finance 19, 261–277 (2015).
Google Scholar
Sideridis, G. D., Simos, P., Mouzaki, A. & Stamovlasis, D. Efficient word reading: Automaticity of print-related skills indexed by rapid automatized naming through cusp-catastrophe modeling. Sci. Stud. Read. 20, 6–19 (2016).
Google Scholar
Diks, C. & Wang, J. Can a stochastic cusp catastrophe model explain housing market crashes?. J. Econ. Dyn. Control 69, 68–88 (2016).
Google Scholar
Xu, Y. & Chen, X. Protection motivation theory and cigarette smoking among vocational high school students in China: A cusp catastrophe modeling analysis. Glob. Health Res. Policy 1, 3 (2016).
Google Scholar
Chen, D.-G., Lin, F., Chen, X., Tang, W. & Kitzman, H. Cusp Catastrophe Model: A nonlinear model for health outcomes in nursing research. Nurs. Res. 63, 211–220 (2014).
Google Scholar
Mostafa, M. M. Catastrophe theory predicts international concern for global warming. J. Quant. Econ. https://doi.org/10.1007/s40953-020-00199-8 (2020).
Google Scholar
Sguotti, C. et al. Non-linearity in stock–recruitment relationships of Atlantic cod: Insights from a multi-model approach. ICES J. Mar. Sci. 77, 1492–1502 (2020).
Google Scholar
Forster, P. M., Maycock, A. C., McKenna, C. M. & Smith, C. J. Latest climate models confirm need for urgent mitigation. Nat. Clim. Change 10, 7–10 (2020).
Google Scholar
Gröger, M., Arneborg, L., Dieterich, C., Höglund, A. & Meier, H. E. M. Summer hydrographic changes in the Baltic Sea, Kattegat and Skagerrak projected in an ensemble of climate scenarios downscaled with a coupled regional ocean–sea ice–atmosphere model. Clim. Dyn. 53, 5945–5966 (2019).
Google Scholar
Litzow, M. A., Mueter, F. J. & Hobday, A. J. Reassessing regime shifts in the North Pacific: Incremental climate change and commercial fishing are necessary for explaining decadal-scale biological variability. Glob. Change Biol. 20, 38–50 (2014).
Google Scholar
Auber, A., Travers-Trolet, M., Villanueva, M. C. & Ernande, B. Regime shift in an exploited fish community related to natural climate oscillations. PLoS One 10, e0129883 (2015).
Google Scholar
Karnauskas, M. et al. Evidence of climate-driven ecosystem reorganization in the Gulf of Mexico. Glob. Change Biol. 21, 2554–2568 (2015).
Google Scholar
Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).
Google Scholar
Kotta, J. et al. Novel crab predator causes marine ecosystem regime shift. Sci. Rep. 8, 4956 (2018).
Google Scholar
Vert-pre, K. A., Amoroso, R. O., Jensen, O. P. & Hilborn, R. Frequency and intensity of productivity regime shifts in marine fish stocks. Proc. Natl. Acad. Sci. 110, 1779–1784 (2013).
Google Scholar
Perretti, C. et al. Regime shifts in fish recruitment on the Northeast US Continental Shelf. Mar. Ecol. Prog. Ser. 574, 1–11 (2017).
Google Scholar
Litzow, M. A., Ciannelli, L., Cunningham, C. J., Johnson, B. & Puerta, P. Nonstationary effects of ocean temperature on Pacific salmon productivity. Can. J. Fish. Aquat. Sci. 76, 1923–1928 (2019).
Google Scholar
van der Maas, H. L. J., Kolstein, R. & van der Pligt, J. Sudden transitions in attitudes. Sociol. Methods Res. 32, 125–152 (2003).
Google Scholar
Griffith, G. P. Closing the gap between causality, prediction, emergence, and applied marine management. ICES J. Mar. Sci. 77, 1456–1462 (2020).
Google Scholar
Hutchings, J. A. Collapse and recovery of marine fishes. Nature 406, 882–885 (2000).
Google Scholar
Hilborn, R., Hively, D. J., Jensen, O. P. & Branch, T. A. The dynamics of fish populations at low abundance and prospects for rebuilding and recovery. ICES J. Mar. Sci. 71, 2141–2151 (2014).
Google Scholar
Köster, F. Trophodynamic control by clupeid predators on recruitment success in Baltic cod?. ICES J. Mar. Sci. 57, 310–323 (2000).
Google Scholar
Rowe, S., Hutchings, J. A., Bekkevold, D. & Rakitin, A. Depensation, probability of fertilization, and the mating system of Atlantic cod (Gadus morhua L.). ICES J. Mar. Sci. 61, 1144–1150 (2004).
Google Scholar
Keith, D. M. & Hutchings, J. A. Population dynamics of marine fishes at low abundance. Can. J. Fish. Aquat. Sci. 69, 1150–1163 (2012).
Google Scholar
Kuparinen, A., Keith, D. M. & Hutchings, J. A. Allee effect and the uncertainty of population recovery: Allee effect and population recovery. Conserv. Biol. 28, 790–798 (2014).
Google Scholar
Neuenhoff, R. D. et al. Continued decline of a collapsed population of Atlantic cod (Gadus morhua) due to predation-driven Allee effects. Can. J. Fish. Aquat. Sci. 76, 168–184 (2019).
Google Scholar
Vergnon, R., Shin, Y.-J. & Cury, P. Cultivation, Allee effect and resilience of large demersal fish populations. Aquat. Living Resour. 21, 287–295 (2008).
Google Scholar
Saha, B., Bhowmick, A. R., Chattopadhyay, J. & Bhattacharya, S. On the evidence of an Allee effect in herring populations and consequences for population survival: A model-based study. Ecol. Model. 250, 72–80 (2013).
Google Scholar
Perälä, T. & Kuparinen, A. Detection of Allee effects in marine fishes: Analytical biases generated by data availability and model selection. Proc. R. Soc. B Biol. Sci. 284, 20171284 (2017).
Google Scholar
Lundquist, C. J. & Botsford, L. W. Estimating larval production of a broadcast spawner: The influence of density, aggregation, and the fertilization Allee effect. Can. J. Fish. Aquat. Sci. 68, 30–42 (2011).
Google Scholar
Sæther, B.-E., Engen, S., Lande, R. & Saether, B.-E. Density-dependence and optimal harvesting of fluctuating populations. Oikos 76, 40 (1996).
Google Scholar
Rowe, S. & Hutchings, J. A. Mating systems and the conservation of commercially exploited marine fish. Trends Ecol. Evol. 18, 567–572 (2003).
Google Scholar
Swain, D. P. & Chouinard, G. A. Predicted extirpation of the dominant demersal fish in a large marine ecosystem: Atlantic cod (Gadus morhua) in the southern Gulf of St. Lawrence. Can. J. Fish. Aquat. Sci. 65, 2315–2319 (2008).
Google Scholar
Kuparinen, A. & Hutchings, J. A. Increased natural mortality at low abundance can generate an Allee effect in a marine fish. R. Soc. Open Sci. 1, 140075 (2014).
Google Scholar
Swain, D. & Benoît, H. Extreme increases in natural mortality prevent recovery of collapsed fish populations in a Northwest Atlantic ecosystem. Mar. Ecol. Prog. Ser. 519, 165–182 (2015).
Google Scholar
Walters, C. & Kitchell, J. F. Cultivation/depensation effects on juvenile survival and recruitment: Implications for the theory of fishing. Can. J. Fish. Aquat. Sci. 58, 39–50 (2001).
Google Scholar
Andreasen, H. et al. Diet composition and food consumption rate of harbor porpoises (Phocoena phocoena) in the western Baltic Sea. Mar. Mamm. Sci. 33, 1053–1079 (2017).
Google Scholar
Hüssy, K. Review of western Baltic cod (Gadus morhua) recruitment dynamics. ICES J. Mar. Sci. 68, 1459–1471 (2011).
Google Scholar
Winter, A., Richter, A. & Eikeset, A. M. Implications of Allee effects for fisheries management in a changing climate: Evidence from Atlantic cod. Ecol. Appl. 30, 1–14 (2020).
Munch, S. B., Giron-Nava, A. & Sugihara, G. Nonlinear dynamics and noise in fisheries recruitment: A global meta-analysis. Fish Fish. 19, 964–973 (2018).
Google Scholar
Szuwalski, C. S., Vert-Pre, K. A., Punt, A. E., Branch, T. A. & Hilborn, R. Examining common assumptions about recruitment: A meta-analysis of recruitment dynamics for worldwide marine fisheries. Fish Fish. 16, 633–648 (2015).
Google Scholar
Funk, S., Krumme, U., Temming, A. & Möllmann, C. Gillnet fishers’ knowledge reveals seasonality in depth and habitat use of cod (Gadus morhua) in the Western Baltic Sea. ICES J. Mar. Sci. https://doi.org/10.1093/icesjms/fsaa071 (2020).
Google Scholar
Hüssy, K., Hinrichsen, H.-H. & Huwer, B. Hydrographic influence on the spawning habitat suitability of western Baltic cod (Gadus morhua). ICES J. Mar. Sci. 69, 1736–1743 (2012).
Google Scholar
Hinrichsen, H.-H., Hüssy, K. & Huwer, B. Spatio-temporal variability in western Baltic cod early life stage survival mediated by egg buoyancy, hydrography and hydrodynamics. ICES J. Mar. Sci. 69, 1744–1752 (2012).
Google Scholar
Petereit, C., Hinrichsen, H.-H., Franke, A. & Köster, F. Floating along buoyancy levels: Dispersal and survival of western Baltic fish eggs. Prog. Oceanogr. 122, 131–152 (2014).
Google Scholar
Stiasny, M. H. et al. Ocean acidification effects on Atlantic Cod larval survival and recruitment to the fished population. PLoS One 11, e0155448 (2016).
Google Scholar
Voss, R. et al. Ecological-economic sustainability of the Baltic cod fisheries under ocean warming and acidification. J. Environ. Manag. 238, 110–118 (2019).
Google Scholar
Lindegren, M., Möllmann, C., Nielsen, A. & Stenseth, N. C. Preventing the collapse of the Baltic cod stock through an ecosystem-based management approach. Proc. Natl. Acad. Sci. 106, 14722–14727 (2009).
Google Scholar
Lindegren, M. et al. Ecological forecasting under climate change: The case of Baltic cod. Proc. R. Soc. B Biol. Sci. 277, 2121–2130 (2010).
Google Scholar
Holsman, K. K. et al. Ecosystem-based fisheries management forestalls climate-driven collapse. Nat. Commun. 11, 4579 (2020).
Google Scholar
Levin, P. S. et al. Building effective fishery ecosystem plans. Mar. Policy 92, 48–57 (2018).
Google Scholar
Dawson, C. & Levin, P. S. Moving the ecosystem-based fisheries management mountain begins by shifting small stones: A critical analysis of EBFM on the U.S. West Coast. Mar. Policy 100, 58–65 (2019).
Google Scholar
Link, J. S. & Marshak, A. R. Characterizing and comparing marine fisheries ecosystems in the United States: Determinants of success in moving toward ecosystem-based fisheries management. Rev. Fish Biol. Fish. 29, 23–70 (2019).
Google Scholar
Townsend, H. et al. Progress on implementing ecosystem-based fisheries management in the United States through the use of ecosystem models and analysis. Front. Mar. Sci. 6, 641 (2019).
Google Scholar
Koehn, L. E. et al. Case studies demonstrate capacity for a structured planning process for ecosystem-based fisheries management. Can. J. Fish. Aquat. Sci. 77, 1256–1274 (2020).
Google Scholar
Skern-Mauritzen, M. et al. Ecosystem processes are rarely included in tactical fisheries management. Fish Fish. 17, 165–175 (2016).
Google Scholar
Marshall, K. N., Koehn, L. E., Levin, P. S., Essington, T. E. & Jensen, O. P. Inclusion of ecosystem information in US fish stock assessments suggests progress toward ecosystem-based fisheries management. ICES J. Mar. Sci. 76, 1–9 (2019).
Google Scholar
Otto, S. A., Kadin, M., Casini, M., Torres, M. A. & Blenckner, T. A quantitative framework for selecting and validating food web indicators. Ecol. Ind. 84, 619–631 (2018).
Google Scholar
Kadin, M. et al. Trophic interactions, management trade-offs and climate change: The need for adaptive thresholds to operationalize ecosystem indicators. Front. Mar. Sci. 6, 249 (2019).
Google Scholar
Samhouri, J. F. et al. Defining ecosystem thresholds for human activities and environmental pressures in the California Current. Ecosphere 8, 1–21 (2017).
Payne, M. R. et al. Lessons from the first generation of marine ecological forecast products. Front. Mar. Sci. 4, 289 (2017).
Google Scholar
Tommasi, D. et al. Managing living marine resources in a dynamic environment: The role of seasonal to decadal climate forecasts. Prog. Oceanogr. 152, 15–49 (2017).
Google Scholar
Haltuch, M. et al. Unraveling the recruitment problem: A review of environmentally-informed forecasting and management strategy evaluation. Fish. Res. 217, 198–216 (2019).
Google Scholar
Hobday, A. J. et al. A framework for combining seasonal forecasts and climate projections to aid risk management for fisheries and aquaculture. Front. Mar. Sci. 5, 137 (2018).
Google Scholar
Hobday, A. J. et al. Ethical considerations and unanticipated consequences associated with ecological forecasting for marine resources. ICES J. Mar. Sci. https://doi.org/10.1093/icesjms/fsy210 (2019).
Google Scholar
Punt, A. E., Butterworth, D. S., de Moor, C. L., De Oliveira, J. A. A. & Haddon, M. Management strategy evaluation: Best practices. Fish Fish. 17, 303–334 (2016).
Google Scholar
Grüss, A. et al. Recommendations on the use of ecosystem modeling for informing ecosystem-based fisheries management and restoration outcomes in the Gulf of Mexico. Mar. Coast. Fish. 9, 281–295 (2017).
Google Scholar
Hollowed, A. B. et al. Integrated modeling to evaluate climate change impacts on coupled social-ecological systems in Alaska. Front. Mar. Sci. 6, 775 (2020).
Google Scholar
Okamoto, D. K. et al. Attending to spatial social–ecological sensitivities to improve trade-off analysis in natural resource management. Fish Fish. 21, 1–12 (2020).
Google Scholar
Möllmann, C. et al. Implementing ecosystem-based fisheries management: From single-species to integrated ecosystem assessment and advice for Baltic Sea fish stocks. ICES J. Mar. Sci. 71, 1187–1197 (2014).
Google Scholar
Voss, R. et al. Assessing social—ecological trade-offs to advance ecosystem-based fisheries management. PLoS One 9, e107811 (2014).
Google Scholar
Schmidt, J. O. et al. Future ocean observations to connect climate, fisheries and marine ecosystems. Front. Mar. Sci. 6, 550 (2019).
Google Scholar
Hicks, C. C. et al. Engage key social concepts for sustainability. Science 352, 38–40 (2016).
Google Scholar
Hornborg, S. et al. Ecosystem-based fisheries management requires broader performance indicators for the human dimension. Mar. Policy 108, 103639 (2019).
Google Scholar
Levin, P. S. et al. Conceptualization of social-ecological systems of the california current: An examination of interdisciplinary science supporting ecosystem-based management. Coast. Manag. 44, 397–408 (2016).
Google Scholar
ICES. Herring (Clupea harengus) in subdivisions 20-24, spring spawners (Skagerrak, Kattegat, and western Baltic). https://doi.org/10.17895/ICES.ADVICE.4715 (2019).
Quentin Grafton, R. Adaptation to climate change in marine capture fisheries. Mar. Policy 34, 606–615 (2010).
Google Scholar
Lindegren, M. & Brander, K. Adapting fisheries and their management to climate change: A review of concepts, tools, frameworks, and current progress toward implementation. Rev. Fish. Sci. Aquac. 26, 400–415 (2018).
Google Scholar
Holsman, K. K. et al. Towards climate resiliency in fisheries management. ICES J. Mar. Sci. https://doi.org/10.1093/icesjms/fsz031 (2019).
Google Scholar
Bell, R. J., Odell, J., Kirchner, G. & Lomonico, S. Actions to promote and achieve climate-ready fisheries: Summary of current practice. Mar. Coast. Fish. 12, 166–190 (2020).
Google Scholar
Gaichas, S. K., Link, J. S. & Hare, J. A. A risk-based approach to evaluating northeast US fish community vulnerability to climate change. ICES J. Mar. Sci. 71, 2323–2342 (2014).
Google Scholar
Pecl, G. T. et al. Rapid assessment of fisheries species sensitivity to climate change. Clim. Change 127, 505–520 (2014).
Google Scholar
Hare, J. A. et al. A vulnerability assessment of fish and invertebrates to climate change on the Northeast U.S. Continental Shelf. PLoS One 11, e0146756 (2016).
Google Scholar
Johnson, J. E. et al. Assessing and reducing vulnerability to climate change: Moving from theory to practical decision-support. Mar. Policy 74, 220–229 (2016).
Google Scholar
Whitney, C. K. et al. Adaptive capacity: From assessment to action in coastal social-ecological systems. Ecol. Soc. 22, art22 (2017).
Google Scholar
Johnson, F. A., Eaton, M. J., Mikels-Carrasco, J. & Case, D. Building adaptive capacity in a coastal region experiencing global change. Ecol. Soc. 25, art9 (2020).
Google Scholar
ICES. Baltic Fisheries Assessemant Working Group. (2019). https://doi.org/10.17895/ICES.PUB.5949.
ICES. Baltic Fisheries Assessemant Working Group. ICES CM 2014/ACOM:10 (2014).
Hüssy, K. et al. Spatio-temporal trends in stock mixing of eastern and western Baltic cod in the Arkona Basin and the implications for recruitment. ICES J. Mar. Sci. J. Conseil 73, 293–303 (2016).
Google Scholar
Weist, P. et al. Assessing SNP-markers to study population mixing and ecological adaptation in Baltic cod. PLoS One 14, e0218127 (2019).
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing. (Accessed 2 July 2021); https://www.R-project.org/ (R Foundation for Statistical Computing, 2020).
Wickham, H. et al. Welcome to the tidyverse. J. Open Source Softw. 4, 1686 (2019).
Google Scholar
Killick, R. & Eckley, I. A. Changepoint: An R package for changepoint analysis. J. Stat. Softw. 58, 1–19 (2014).
Zeileis, A., Kleiber, C., Krämer, W. & Hornik, K. Testing and dating of structural changes in practice. Comput. Stat. Data Anal. 44, 109–123 (2003).
Google Scholar
Otto, S. A. Comparison of change point detection methods. (Accessed 2 July 2021); https://www.marinedatascience.co/blog/2019/09/28/comparison-of-change-point-detection-methods/. (2019).
Source: Ecology - nature.com