in

Topography modulates near-ground microclimate in the Mediterranean Fagus sylvatica treeline

  • 1.

    Jones, C. G., Lawton, J. H., & Shachak, M. Organisms as ecosystem engineers. In Ecosystem Management 130–147 (Springer, 1994).

  • 2.

    Alvarez-Uria, P. & Körner, C. Low temperature limits of root growth in deciduous and evergreen temperate tree species. Funct. Ecol. 21, 211–218 (2007).

    Article 

    Google Scholar 

  • 3.

    Rossi, S. et al. Pattern of xylem phenology in conifers of cold ecosystems at the Northern Hemisphere. Glob. Chang. Biol. 22, 3804–3813 (2016).

    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 

  • 4.

    Körner, C. & Paulsen, J. A world-wide study of high altitude treeline temperatures. J. Biogeogr. 31, 713–732 (2004).

    Article 

    Google Scholar 

  • 5.

    Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article 

    Google Scholar 

  • 6.

    Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 (2014).

    Article 

    Google Scholar 

  • 7.

    Albrich, K., Rammer, W. & Seidl, R. Climate change causes critical transitions and irreversible alterations of mountain forests. Glob. Change Biol. 26, 4013–4027 (2020).

    Article 
    ADS 

    Google Scholar 

  • 8.

    De Frenne, P. et al. Microclimate moderates plant responses to macroclimate warming. PNAS 110, 18561–18565 (2013).

    PubMed 
    Article 
    ADS 
    CAS 
    PubMed Central 

    Google Scholar 

  • 9.

    Maclean, I. M. D. et al. Microclimates buffer the responses of plant communities to climate change. Glob. Ecol. Biogeogr. 24, 1340–1350 (2015).

    Article 

    Google Scholar 

  • 10.

    Bertrand, R. et al. Changes in plant community composition lag behind climate warming in lowland forests. Nature 479, 517–520 (2011).

    CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 

  • 11.

    Weigel, R., Gilles, J., Klisz, M., Manthey, M. & Kreyling, J. Forest understory vegetation is more related to soil than to climate towards the cold distribution margin of European beech. J. Veg Sci. 30, 746–755 (2019).

    Article 

    Google Scholar 

  • 12.

    Zellweger, F. et al. Forest microclimate dynamics drive plant responses to warming. Science 368, 772–775 (2020).

    CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 

  • 13.

    Dozier, J. & Outcalt, S. I. An approach toward energy balance simulation over rugged terrain. Geogr. Anal. 11, 65–85 (1979).

    Article 

    Google Scholar 

  • 14.

    Rorison, I. H., Sutton, F. & Hunt, R. Local climate, topography and plant growth in Lathkill Dale NNR. I. A twelve-year summary of solar radiation and temperature. Plant Cell Environ. 9, 49–56 (1986).

    Google Scholar 

  • 15.

    Ackerly, D. D. et al. The geography of climate change: Implications for conservation biogeography. Divers. Distrib. 16, 476–487 (2010).

    Article 

    Google Scholar 

  • 16.

    Baldocchi, D. D. & Xu, L. What limits evaporation from Mediterranean oak woodlands—The supply of moisture in the soil, physiological control by plants or the demand by the atmosphere?. Adv. Water Resour. 30, 2113–2122 (2007).

    Article 
    ADS 

    Google Scholar 

  • 17.

    Komatsu, H. Forest categorization according to dry-canopy evaporation rates in the growing season: Comparison of the Priestley-Taylor coefficient values from various observation sites. Hydrol. Process. 19, 3873–3896 (2005).

    Article 
    ADS 

    Google Scholar 

  • 18.

    Lenoir, J. et al. Local temperatures inferred from plant communities suggest strong spatial buffering of climate warming across Northern Europe. Glob. Chang. Biol. 19, 1470–1481 (2013).

    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 

  • 19.

    Aussenac, G. Interactions between forest stands and microclimate: Ecophysiological aspects and consequences for silviculture. Ann. For. Sci. 57, 287–301 (2000).

    Article 

    Google Scholar 

  • 20.

    von Arx, G., Dobbertin, M. & Rebetez, M. Spatio-temporal effects of forest canopy on understory microclimate in a long-term experiment in Switzerland. Agric. For. Meteorol. 166, 144–155 (2012).

    Article 
    ADS 

    Google Scholar 

  • 21.

    Gaudio, N. et al. Impact of tree canopy on thermal and radiative microclimates in a mixed temperate forest: A new statistical method to analyse hourly temporal dynamics. Agric. For. Meteorol. 237, 71–79 (2017).

    Article 
    ADS 

    Google Scholar 

  • 22.

    Niinemets, Ü. A review of light interception in plant stands from leaf to canopy in different plant functional types and in species with varying shade tolerance. Ecol. Res. 25, 693–714 (2010).

    Article 

    Google Scholar 

  • 23.

    Breshears, D. D., Myers, O. B. & Barnes, F. J. Horizontal heterogeneity in the frequency of plant-available water with woodland intercanopy-canopy vegetation patch type rivals that occurring vertically by soil depth. Ecohydrology 2, 503–519 (2009).

    Article 

    Google Scholar 

  • 24.

    Zou, C. B., Barron-Gafford, G. A. & Breshears, D. D. Effects of topography and woody plant canopy cover on near-ground solar radiation: Relevant energy inputs for ecohydrology and hydropedology. Geophys. Res. Lett. 34, L24S21 (2007).

    Article 

    Google Scholar 

  • 25.

    Renaud, V., Innes, J. L., Dobbertin, M. & Rebetez, M. Comparison between open-site and below-canopy climatic conditions in Switzerland for different types of forests over 10 years (1998–2007). Theor. Appl. Climatol. 105, 119–127 (2011).

    Article 
    ADS 

    Google Scholar 

  • 26.

    De Frenne, P. et al. Global buffering of temperatures under forest canopies. Nat. Ecol. Evol. 3, 744–749 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 27.

    Harsch, M. A. & Bader, M. Y. Treeline form—A potential key to understanding treeline dynamics. Glob. Ecol. Biogeogr. 20, 582–596 (2011).

    Article 

    Google Scholar 

  • 28.

    Körner, C. et al. Where, why and how? Explaining the low-temperature range limits of temperate tree species. J. Ecol. 104, 1076–1088 (2016).

    Article 
    CAS 

    Google Scholar 

  • 29.

    Lenoir, J., Hattab, T. & Pierre, G. Climatic microrefugia under anthropogenic climate change: Implications for species redistribution. Ecography 40, 253–266 (2017).

    Article 

    Google Scholar 

  • 30.

    Bonanomi, G. et al. Anthropogenic and environmental factors affect the tree line position of Fagus sylvatica along the Apennines (Italy). J. Biogeogr. 45, 2595–2608 (2018).

    Article 

    Google Scholar 

  • 31.

    Bonanomi, G. et al. Climatic and anthropogenic factors explain the variability of Fagus sylvatica treeline elevation in fifteen mountain groups across the Apennines. For. Ecosyst. 7, 5 (2020).

    Article 

    Google Scholar 

  • 32.

    Driessen, P., Deckers, J., Spaargaren, O. & Nachtergaele, F. (Eds.). Lecture notes on the major soils of the world. In World Soil Resources Report; No. 94. (Food and Agricultural Organization of the United Nations, 2001).

  • 33.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article 

    Google Scholar 

  • 34.

    R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org/ (R Foundation for Statistical Computing, Vienna, 2019).

  • 35.

    Wood, S. N. Generalized Additive Models: An Introduction with R 2nd edn. (CRC Press, 2017).

    Google Scholar 

  • 36.

    Davis, K. T., Dobrowski, S. Z., Holden, Z. A., Higuera, P. E. & Abatzoglou, J. T. Microclimatic buffering in forests of the future: The role of local water balance. Ecography 42, 1–11 (2019).

    Article 

    Google Scholar 

  • 37.

    Barton, K. MuMIn: Multi-Model Inference. R package version 1.43.15. https://CRAN.R-project.org/package=MuMIn (2019).

  • 38.

    Geiger, R., Aron, R. H. & Todhunter, P. The Climate near the Ground (Rowman & Littlefield Publishers, 2003).

    Google Scholar 

  • 39.

    Bader, M., Rietkerk, M. & Bregt, A. Vegetation structure and temperature regimes of tropical alpine treelines. Arct. Antarct. Alp. Res. 39, 353–364 (2007).

    Article 

    Google Scholar 

  • 40.

    Potter, B. E., Teclaw, R. M. & Zasada, J. C. The impact of forest structure on near-ground temperatures during two years of contrasting temperature extremes. Agric. For. Meteorol. 106, 331–336 (2001).

    Article 
    ADS 

    Google Scholar 

  • 41.

    von Arx, G., Pannatier, E. G., Thimonier, A. & Rebetez, M. Microclimate in forests with varying leaf area index and soil moisture: Potential implications for seedling establishment in a changing climate. J. Ecol. 101, 1201–1213 (2013).

    Article 

    Google Scholar 

  • 42.

    Frey, B. R. et al. An analysis of sucker regeneration of trembling aspen. Can. J. For. Res. 33, 1169–1179 (2003).

    Article 

    Google Scholar 

  • 43.

    Lenz, A., Hoch, G. & Vitasse, Y. Fast acclimation of freezing resistance suggests no influence of winter minimum temperature on the range limit of European beech. Tree Physiol. 36, 490–501 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 44.

    Keitel, C. et al. Carbon and oxygen isotope composition of organic compounds in the phloem sap provides a short-term measure for stomatal conductance of European beech (Fagus sylvatica L.). Plant Cell Environ. 26, 1157–1168 (2003).

    CAS 
    Article 

    Google Scholar 

  • 45.

    van der Maaten, E., Bouriaud, O., van der Maaten-Theunissen, M., Mayer, H. & Spiecker, H. Meteorological forcing of day-to-day stem radius variations of beech is highly synchronic on opposing aspects of a valley. Agric. For. Meteorol. 181, 85–93 (2013).

    Article 
    ADS 

    Google Scholar 

  • 46.

    Smith, D. L. & Johnson, L. Vegetation-mediated changes in microclimate reduce soil respiration as woodlands expand into grasslands. Ecology 85, 3348–3361 (2004).

    Article 

    Google Scholar 

  • 47.

    Wu, Z., Dijkstra, P., Koch, G. W., Peñuelas, J. & Hungate, B. A. Responses of terrestrial ecosystems to temperature and precipitation change: A meta-analysis of experimental manipulation. Glob. Change Biol. 17, 927–942 (2011).

    Article 
    ADS 

    Google Scholar 

  • 48.

    Gehlhausen, S. M., Schwartz, M. W. & Augspurger, C. K. Vegetation and microclimatic edge effects in two mixed-mesophytic forest fragments. Plant Ecol. 147, 21–35 (2000).

    Article 

    Google Scholar 

  • 49.

    Hofmeister, J. et al. Microclimate edge effect in small fragments of temperate forests in the context of climate change. For. Ecol. Manag. 448, 48–56 (2019).

    Article 

    Google Scholar 

  • 50.

    Treml, V. & Banaš, M. The effect of exposure on alpine treeline position: A case study from the High Sudetes, Czech Republic. Arct. Antarct. Alp. Res. 40, 751–760 (2008).

    Article 

    Google Scholar 

  • 51.

    Zellweger, F. et al. Seasonal drivers of understorey temperature buffering in temperate deciduous forests across Europe. Glob. Ecol. Biogeogr. 28, 1774–1786 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 52.

    Frey, S. J. et al. Spatial models reveal the microclimatic buffering capacity of old-growth forests. Sci. Adv. 2, e1501392 (2016).

    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 53.

    Ashcroft, M. B. & Gollan, J. R. Moisture, thermal inertia, and the spatial distributions of near-surface soil and air temperatures: Understanding factors that promote microrefugia. Agric. For. Meteorol. 176, 77–89 (2013).

    Article 
    ADS 

    Google Scholar 

  • 54.

    Holden, Z. A., Klene, A. E., Keefe, R. F. & Moisen, G. G. Design and evaluation of an inexpensive radiation shield for monitoring surface air temperatures. Agric. For. Meteorol. 180, 281–286 (2013).

    Article 
    ADS 

    Google Scholar 

  • 55.

    Maher, E. L., Germino, M. J. & Hasselquist, N. J. Interactive effects of tree and herb cover on survivorship, physiology, and microclimate of conifer seedlings at the alpine tree-line ecotone. Can. J. For. Res. 35, 567–574 (2005).

    Article 

    Google Scholar 

  • 56.

    Maher, E. L. & Germino, M. J. Microsite differentiation among conifer species during seedling establishment at alpine treeline. Ecoscience 13, 334–341 (2006).

    Article 

    Google Scholar 

  • 57.

    Mayor, J. R. et al. Elevation alters ecosystem properties across temperate treelines globally. Nature 542, 91–95 (2017).

    CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 

  • 58.

    Allevato, E. et al. Canopy damage by spring frost in European beech along the Apennines: Effect of latitude, altitude and aspect. Remote Sens. Environ. 225, 431–440 (2019).

    Article 
    ADS 

    Google Scholar 

  • 59.

    Nolè, A., Rita, A., Ferrara, A. M. S. & Borghetti, M. Effects of a large-scale late spring frost on a beech (Fagus sylvatica L.) dominated Mediterranean mountain forest derived from the spatio-temporal variations of NDVI. Ann. For. Sci. 75, 83 (2018).

    Article 

    Google Scholar 

  • 60.

    Müller, M. et al. Soil temperature and soil moisture patterns in a Himalayan alpine treeline ecotone. Arct. Antarct. Alp. Res. 48, 501–521 (2016).

    Article 

    Google Scholar 

  • 61.

    Liechty, H. O., Holmes, M. J., Reed, D. D. & Mroz, G. D. Changes in microclimate after stand conversion in two northern hardwood stands. For. Ecol. Manag. 50, 253–264 (1992).

    Article 

    Google Scholar 

  • 62.

    Peterson, D. W. & Peterson, D. L. Mountain hemlock growth responds to climatic variability at annual and decadal time scales. Ecology 82, 3330–3345 (2001).

    Article 

    Google Scholar 

  • 63.

    Jarvis, P. et al. Drying and wetting of Mediterranean soils stimulates decomposition and carbon dioxide emission: The “Birch effect”. Tree Physiol. 27, 929–940 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 64.

    Binkley, D. & Fisher, R. F. Ecology and Management of Forest Soils (Wiley-Blackwell, 2013).

    Google Scholar 


  • Source: Ecology - nature.com

    Negative emissions, positive economy

    Individual US diets show wide variation in water scarcity footprints