in

Towards an ecosystem model of infectious disease

  • 1.

    Allen, T. et al. Global hotspots and correlates of emerging zoonotic diseases. Nat. Commun. 8, 1124 (2017).

  • 2.

    Gibb, R. et al. Zoonotic host diversity increases in human-dominated ecosystems. Nature 584, 398–402 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 3.

    Hassell, J. M., Begon, M., Ward, M. J. & Fèvre, E. M. Urbanization and disease emergence: dynamics at the wildlife–livestock–human interface. Trends Ecol. Evol. 32, 55–67 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 4.

    Plowright, R. K. et al. Pathways to zoonotic spillover. Nat. Rev. Microbiol. 15, 502–510 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 5.

    Holmes, E. C., Rambaut, A. & Andersen, K. G. Pandemics: spend on surveillance, not prediction comment. Nature 558, 180–182 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 6.

    Tabachnick, W. J. Challenges in predicting climate and environmental effects on vector-borne disease episystems in a changing world. J. Exp. Biol. 213, 946–954 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 7.

    Franklinos, L. H. V., Jones, K. E., Redding, D. W. & Abubakar, I. The effect of global change on mosquito-borne disease. Lancet Inf. Dis. 19, e302–e312 (2019).

    Article 

    Google Scholar 

  • 8.

    Seabloom, E. W. et al. The community ecology of pathogens: coinfection, coexistence and community composition. Ecol. Lett. 18, 401–415 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 9.

    Johnson, P. T. J., De Roode, J. C. & Fenton, A. Why infectious disease research needs community ecology. Science 349, 1259504 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 10.

    Parker, I. M. et al. Phylogenetic structure and host abundance drive disease pressure in communities. Nature 520, 542–544 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 11.

    Telfer, S. et al. Species interactions in a parasite community drive infection risk in a wildlife population. Science 330, 243–246 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 12.

    Dallas, T. A., Laine, A.-L. L. & Ovaskainen, O. Detecting parasite associations within multi-species host and parasite communities. Proc. R. Soc. B 286, 20191109 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 13.

    Weinstein, S., Titcomb, G., Agwanda, B., Riginos, C. & Young, H. Parasite responses to large mammal loss in an African savanna. Ecology 98, 1839–1848 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 14.

    Anderson, R. & May, R. Infectious Diseases of Humans: Dynamics and Control (Oxford Univ. Press, 1992).

  • 15.

    Keeling, M. J. & Rohani, P. Modeling Infectious Diseases in Humans and Animals (Princeton Univ. Press, 2011).

  • 16.

    Buhnerkempe, M. G. et al. Eight challenges in modelling disease ecology in multi-host, multi-agent systems. Epidemics 10, 26–30 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 17.

    Cross, P. C., Prosser, D. J., Ramey, A. M., Hanks, E. M. & Pepin, K. M. Confronting models with data: the challenges of estimating disease spillover. Philos. Trans. R. Soc. B 374, 20180435 (2019).

    Article 

    Google Scholar 

  • 18.

    Johnson, E. E., Escobar, L. E. & Zambrana-Torrelio, C. An ecological framework for modeling the geography of disease transmission. Trends Ecol. Evol. 34, 655–668 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 19.

    Warton, D. I. et al. So many variables: joint modeling in community ecology. Trends Ecol. Evol. 30, 766–779 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 20.

    Carlson, C. J. et al. The global distribution of Bacillus anthracis and associated anthrax risk to humans, livestock and wildlife. Nat. Microbiol. 4, 1337–1343 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 21.

    Sutherland, W. J. Predicting the ecological consequences of environmental change: a review of the methods. J. Appl. Ecol. 43, 599–616 (2006).

    Article 

    Google Scholar 

  • 22.

    Getz, W. M. et al. Making ecological models adequate. Ecol. Lett. 21, 153–166 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 23.

    Carlson, C. J., Chipperfield, J. D., Benito, B. M., Telford, R. J. & O’Hara, R. B. Species distribution models are inappropriate for COVID-19. Nat. Ecol. Evol. 4, 770–771 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 24.

    Evans, M. R. et al. Predictive systems ecology. Proc. R. Soc. B 280, 20131452 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 25.

    Purves, D. & Pacala, S. Predictive models of forest dynamics. Science 320, 1452–1453 (2008).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 26.

    Harfoot, M. B. J. et al. Emergent global patterns of ecosystem structure and function from a mechanistic general ecosystem model. PLoS Biol. 12, e1001841 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 27.

    Lafferty, K. D. et al. Parasites in food webs: the ultimate missing links. Ecol. Lett. 11, 533–546 (2008).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 28.

    Redding, D. W. et al. Impacts of environmental and socio-economic factors on emergence and epidemic potential of Ebola in Africa. Nat. Commun. 10, 4531 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 29.

    Redding, D. W., Moses, L. M., Cunningham, A. A., Wood, J. & Jones, K. E. Environmental-mechanistic modelling of the impact of global change on human zoonotic disease emergence: a case study of Lassa fever. Methods Ecol. Evol. 7, 646–655 (2016).

    Article 

    Google Scholar 

  • 30.

    Carlson, C. J., Dallas, T. A., Alexander, L. W., Phelan, A. L. & Phillips, A. J. What would it take to describe the global diversity of parasites? Proc. R. Soc. B 287, 20201841 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 31.

    Rynkiewicz, E. C., Pedersen, A. B. & Fenton, A. An ecosystem approach to understanding and managing within-host parasite community dynamics. Trends Parasitol. 31, 212–221 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 32.

    Lello, J. & Hussell, T. Functional group/guild modelling of inter-specific pathogen interactions: a potential tool for predicting the consequences of co-infection. Parasitology 135, 825–839 (2008).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 33.

    Purves, D. et al. Time to model all life on Earth. Nature 493, 295–297 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 34.

    Kalka, M. B., Smith, A. R. & Kalko, E. K. V. Bats limit arthropods and herbivory in a tropical forest. Science 320, 71 (2008).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 35.

    Lafferty, K. D. et al. A general consumer-resource population model. Science 349, 854–857 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 36.

    Friedman, J., Higgins, L. M. & Gore, J. Community structure follows simple assembly rules in microbial microcosms. Nat. Ecol. Evol. 1, 0109 (2017).

    Article 

    Google Scholar 

  • 37.

    Goldford, J. E. et al. Emergent simplicity in microbial community assembly. Science 361, 469–474 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 38.

    Hatton, I. A. et al. The predator-prey power law: biomass scaling across terrestrial and aquatic biomes. Science 349, 6252 (2015).

    Article 
    CAS 

    Google Scholar 

  • 39.

    Hatton, I. A., Dobson, A. P., Storch, D., Galbraith, E. D. & Loreau, M. Linking scaling laws across eukaryotes. Proc. Natl Acad. Sci. USA 116, 21616 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 40.

    Locey, K. J. & Lennon, J. T. Scaling laws predict global microbial diversity. Proc. Natl Acad. Sci. USA 113, 5970–5975 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 41.

    Godon, J. J., Arulazhagan, P., Steyer, J. P. & Hamelin, J. Vertebrate bacterial gut diversity: size also matters. BMC Ecol. 16, 12 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 42.

    Faust, C. L. et al. Null expectations for disease dynamics in shrinking habitat: dilution or amplification? Philos. Trans. R. Soc. B 372, 20160173 (2017).

    Article 

    Google Scholar 

  • 43.

    De Leo, G. A. & Dobson, A. P. Allometry and simple epidemic models for microparasites. Nature 379, 720–722 (1996).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 44.

    Strauss, A. T., Shoemaker, L. G., Seabloom, E. W. & Borer, E. T. Cross‐scale dynamics in community and disease ecology: relative timescales shape the community ecology of pathogens. Ecology 100, e02836 (2019).

  • 45.

    Handel, A. & Rohani, P. Crossing the scale from within-host infection dynamics to between-host transmission fitness: A discussion of current assumptions and knowledge. Philos. Trans. R. Soc. B 370, 20140302 (2015).

  • 46.

    Tibayrenc, M. & Ayala, F. J. Reproductive clonality of pathogens: a perspective on pathogenic viruses, bacteria, fungi, and parasitic protozoa. Proc. Natl Acad. Sci. USA 109, E3305–E3313 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 47.

    Gorter, F. A., Manhart, M. & Ackermann, M. Understanding the evolution of interspecies interactions in microbial communities. Philos. Trans. R. Soc. B 375, 1798 (2020).

    Article 
    CAS 

    Google Scholar 

  • 48.

    Zeng, Q., Wu, S., Sukumaran, J. & Rodrigo, A. Models of microbiome evolution incorporating host and microbial selection. Microbiome 5, 127 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 49.

    Zeng, Q., Sukumaran, J., Wu, S. & Rodrigo, A. Neutral models of microbiome evolution. PLoS Comput. Biol. 11, e1004365 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 50.

    Liautaud, K., van Nes, E. H., Barbier, M., Scheffer, M. & Loreau, M. Superorganisms or loose collections of species? A unifying theory of community patterns along environmental gradients. Ecol. Lett. 22, 1243–1252 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Coyte, K. Z., Schluter, J. & Foster, K. R. The ecology of the microbiome: Networks, competition, and stability. Science 350, 663–666 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 52.

    Wright, E. S. & Vetsigian, K. H. Inhibitory interactions promote frequent bistability among competing bacteria. Nat. Commun. 7, 11274 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 53.

    Sanchez, A. & Gore, J. Feedback between population and evolutionary dynamics determines the fate of social microbial populations. PLoS Biol. 11, e1001547 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 54.

    Lopatkin, A. J. & Collins, J. J. Predictive biology: modelling, understanding and harnessing microbial complexity. Nat. Rev. Microbiol. 18, 507–520 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 55.

    Wu, F. et al. A unifying framework for interpreting and predicting mutualistic systems. Nat. Commun. 10, 242 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 56.

    Restif, O. et al. Model-guided fieldwork: practical guidelines for multidisciplinary research on wildlife ecological and epidemiological dynamics. Ecol. Lett. 15, 1083–1094 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 57.

    Herzog, S. A., Blaizot, S. & Hens, N. Mathematical models used to inform study design or surveillance systems in infectious diseases: a systematic review. BMC Infect. Dis. 17, 1–10 (2017).

    Article 

    Google Scholar 

  • 58.

    Cotterill, G. G. et al. Winter feeding of elk in the Greater Yellowstone Ecosystem and its effects on disease dynamics. Philos. Trans. R. Soc. B 373, 20170093 (2018).

    Article 

    Google Scholar 

  • 59.

    Cross, P. C. et al. Estimating distemper virus dynamics among wolves and grizzly bears using serology and Bayesian state-space models. Ecol. Evol. 8, 8726–8735 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 60.

    Hopkins, J. B., Ferguson, J. M., Tyers, D. B. & Kurle, C. M. Selecting the best stable isotope mixing model to estimate grizzly bear diets in the Greater Yellowstone Ecosystem. PLoS ONE 12, e0174903 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 61.

    Schwartz, C. C. et al. Body and diet composition of sympatric black and grizzly bears in the Greater Yellowstone Ecosystem. J. Wildl. Manag. 78, 68–78 (2014).

    Article 

    Google Scholar 

  • 62.

    Chester, C. C. Yellowstone to Yukon: transborder conservation across a vast international landscape. Environ. Sci. Policy 49, 75–84 (2015).

    Article 

    Google Scholar 

  • 63.

    Young, H. S. et al. Interacting effects of land use and climate on rodent-borne pathogens in central Kenya. Philos. Trans. R. Soc. B 372, 20160116 (2017).

    Article 

    Google Scholar 

  • 64.

    Sitters, J., Kimuyu, D. M., Young, T. P., Claeys, P. & Olde Venterink, H. Negative effects of cattle on soil carbon and nutrient pools reversed by megaherbivores. Nat. Sustain. 3, 360–366 (2020).

    Article 

    Google Scholar 

  • 65.

    Sethi, S. S., Ewers, R. M., Jones, N. S., Orme, C. D. L. & Picinali, L. Robust, real‐time and autonomous monitoring of ecosystems with an open, low‐cost, networked device. Methods Ecol. Evol. 9, 2383–2387 (2018).

    Article 

    Google Scholar 

  • 66.

    Alfano, N., Dayaram, A. & Tsangaras, K. Non-invasive surveys of mammalian viruses using environmental DNA. Preprint at bioRxiv https://doi.org/10.1101/2020.03.26.009993 (2020)

  • 67.

    Coyte, K. Z. & Rakoff-Nahoum, S. Understanding competition and cooperation within the mammalian gut microbiome. Curr. Biol. 29, R538–R544 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 68.

    Murray, M. H. et al. Gut microbiome shifts with urbanization and potentially facilitates a zoonotic pathogen in a wading bird. PLoS ONE 15, e0220926 (2020).

  • 69.

    McCallum, H. I. et al. Does terrestrial epidemiology apply to marine systems? Trends Ecol. Evol. 19, 585–591 (2004).

    Article 

    Google Scholar 

  • 70.

    Wu, S., Carvalho, P. N., Müller, J. A., Manoj, V. R. & Dong, R. Sanitation in constructed wetlands: a review on the removal of human pathogens and fecal indicators. Sci. Total Environ. 541, 8–22 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 71.

    Lamb, J. B. et al. Seagrass ecosystems reduce exposure to bacterial pathogens of humans, fishes, and invertebrates. Science 355, 731–733 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 72.

    Janssen, M. A., Walker, B. H., Langridge, J. & Abel, N. An adaptive agent model for analysing co-evolution of management and policies in a complex rangeland system. Ecol. Model. 131, 249–268 (2000).

    Article 

    Google Scholar 

  • 73.

    Ngonghala, C. N. et al. General ecological models for human subsistence, health and poverty. Nat. Ecol. Evol. 1, 1153–1159 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 74.

    Hosseini, P. R. et al. Does the impact of biodiversity differ between emerging and endemic pathogens? The need to separate the concepts of hazard and risk. Philos. Trans. R. Soc. B 372, 20160129 (2017).

    Article 

    Google Scholar 

  • 75.

    Washburne, A. D. et al. Percolation models of pathogen spillover. Philos. Trans. R. Soc. B 374, 20180331 (2019).

    Article 

    Google Scholar 

  • 76.

    Olival, K. J. et al. Host and viral traits predict zoonotic spillover from mammals. Nature 546, 646–650 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 77.

    Dobson, A. et al. Habitat loss, trophic collapse, and the decline of ecosystem services. Ecology 87, 1915–1924 (2006).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 78.

    Faust, C. L. et al. Pathogen spillover during land conversion. Ecol. Lett. 21, 471–483 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 79.

    Sokolow, S. H. et al. Ecological interventions to prevent and manage zoonotic pathogen spillover. Philos. Trans. R. Soc. B 374, 20180342 (2019).

    Article 

    Google Scholar 

  • 80.

    Kauffman, M. J. et al. Landscape heterogeneity shapes predation in a newly restored predator-prey system. Ecol. Lett. 10, 690–700 (2007).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 81.

    Smith, D. W., Peterson, R. O. & Houston, D. B. Yellowstone after wolves. BioScience 53, 330–340 (2003).

    Article 

    Google Scholar 

  • 82.

    McNaughton, S. J. Ecology of a grazing ecosystem: the Serengeti. Ecol. Monogr. 55, 259–294 (1985).

    Article 

    Google Scholar 

  • 83.

    Atkins, J. L. et al. Cascading impacts of large-carnivore extirpation in an African ecosystem. Science 364, 173–177 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 84.

    Cross, P. C., Edwards, W. H., Scurlock, B. M., Maichak, E. J. & Rogerson, J. D. Effects of management and climate on elk brucellosis in the Greater Yellowstone Ecosystem. Ecol. Appl. 17, 957–964 (2007).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 85.

    Almberg, E. S., Cross, P. C. & Smith, D. W. Persistence of canine distemper virus in the Greater Yellowstone Ecosystem’s carnivore community. Ecol. Appl. 20, 2058–2074 (2010).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 86.

    Holdo, R. M. et al. A disease-mediated trophic cascade in the Serengeti and its implications for ecosystem C. PLoS Biol. 7, e1000210 (2009).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 87.

    Borer, E. T. in Unsolved Problems in Ecology (eds Dobson, A. P. et al.) 3–15 (Princeton Univ. Press, 2020).

  • 88.

    Kao, R. H. et al. NEON terrestrial field observations: designing continental-scale, standardized sampling. Ecosphere https://doi.org/10.1890/ES12-00196.1 (2012).

  • 89.

    Springer, Y. P. et al. Tick-, mosquito-, and rodent-borne parasite sampling designs for the National Ecological Observatory Network. Ecosphere 7, e01271 (2016).

    Article 

    Google Scholar 

  • 90.

    Anderson-Teixeira, K. J. et al. CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change. Glob. Chang. Biol. 21, 528–549 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 91.

    Dobson, A. P. et al. Ecology and economics for pandemic prevention. Science 369, 379–381 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 92.

    Kress, W. J., Mazet, J. A. K. & Hebert, P. D. N. Opinion: intercepting pandemics through genomics. Proc. Natl Acad. Sci. USA 117, 202009508 (2020).

    Google Scholar 

  • 93.

    Durmuş, S. & Ülgen, K. Comparative interactomics for virus–human protein–protein interactions: DNA viruses versus RNA viruses. FEBS Open Bio 7, 96–107 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 94.

    Becker, D. J. & Albery, G. F. Expanding host specificity and pathogen sharing beyond viruses. Mol. Ecol. 29, 3170–3172 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 95.

    Rittershaus, E. S. C., Baek, S. H. & Sassetti, C. M. The normalcy of dormancy: common themes in microbial quiescence. Cell Host Microbe 13, 643–651 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 96.

    Pedersen, A. B. & Fenton, A. Emphasizing the ecology in parasite community ecology. Trends Ecol. Evol. 22, 133–139 (2007).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 97.

    Schmid-Hempel, P. Immune defence, parasite evasion strategies and their relevance for ‘macroscopic phenomena’ such as virulence. Philos. Trans. R. Soc. B 364, 85–98 (2009).

    Article 

    Google Scholar 

  • 98.

    Hekstra, D. R. & Leibler, S. Contingency and statistical laws in replicate microbial closed ecosystems. Cell 149, 1164–1173 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 99.

    Plowright, R. K. et al. Land use-induced spillover: a call to action to safeguard environmental, animal, and human health. Lancet Planet. 5, E237–E245 (2021).

    Article 

    Google Scholar 

  • 100.

    Barychka, T., Mace, G. & Purves, D. The Madingley General Ecosystem Model predicts bushmeat yields, species extinction rates and ecosystem-level impacts of bushmeat harvesting. Preprint at biorXiv https://doi.org/10.1101/2020.03.02.959718 (2020).


  • Source: Ecology - nature.com

    Crowdsourcing data on road quality and excess fuel consumption

    Ice melts on US-Sudan relations, providing new opportunities