in

Towards an integrative view of virus phenotypes

  • 1.

    Suttle, C. A. Marine viruses — major players in the global ecosystem. Nat. Rev. Microbiol. 5, 801–812 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 2.

    Rohwer, F. & Thurber, R. V. Viruses manipulate the marine environment. Nature 459, 207–212 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 3.

    Simmonds, P. et al. Virus taxonomy in the age of metagenomics. Nat. Rev. Microbiol. 15, 161–168 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 4.

    Fuhrman, J. A. Marine viruses and their biogeochemical and ecological effects. Nature 399, 541–548 (1999).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 5.

    Suttle, C. A. Viruses in the sea. Nature 437, 356–361 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 6.

    Jiang, S., Steward, G., Jellison, R., Chu, W. & Choi, S. Abundance, distribution, and diversity of viruses in alkaline, hypersaline Mono Lake, California. Microb. Ecol. 47, 9–17 (2004).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 7.

    Williamson, K. E., Fuhrmann, J. J., Wommack, K. E. & Radosevich, M. Viruses in soil ecosystems: an unknown quantity within an unexplored territory. Annu. Rev. Virol. 4, 201–219 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 8.

    Cai, L. et al. Active and diverse viruses persist in the deep sub-seafloor sediments over thousands of years. ISME J. 13, 1857–1864 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 9.

    Wei, M. & Xu, K. New insights into the virus-to-prokaryote ratio (VPR) in marine sediments. Front. Microbiol. 11, 1102 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 10.

    Wilhelm, S. W. & Suttle, C. A. Viruses and nutrient cycles in the sea. BioScience 49, 781–788 (1999).

    Article 

    Google Scholar 

  • 11.

    Brussaard, C. P. D. et al. Global-scale processes with a nanoscale drive: the role of marine viruses. ISME J. 2, 575–578 (2008).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 12.

    Howard-Varona, C. et al. Phage-specific metabolic reprogramming of virocells. ISME J. 14, 881–895 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 13.

    Nee, S. & Maynard Smith, J. The evolutionary biology of molecular parasites. Parasitology 100, S5–S18 (1990).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 14.

    Hambly, E. & Suttle, C. A. The viriosphere, diversity, and genetic exchange within phage communities. Curr. Opin. Microbiol. 8, 444–450 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 15.

    Sullivan, M. B. et al. Prevalence and evolution of core photosystem II genes in marine cyanobacterial viruses and their hosts. PLoS Biol. 4, e234 (2006).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 16.

    Holmes, E. C. What does virus evolution tell us about virus origins? J. Virol. 85, 5247–5251 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 17.

    Wolf, Y. I. et al. Origins and evolution of the global RNA virome. mBio 9, e02329-18 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 18.

    Kuhn, J. H. et al. Classify viruses-the gain is worth the pain. Nature 566, 318–320 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 19.

    Record, N. R., Talmy, D. & Våge, S. Quantifying tradeoffs for marine viruses. Front. Mar. Sci. https://doi.org/10.3389/fmars.2016.00251 (2016). Investigates trade-offs in phenotypes of marine viruses that may influence virus population dynamics and biogeography.

    Article 

    Google Scholar 

  • 20.

    Domingo, E. et al. Basic concepts in RNA virus evolution. FASEB J. 10, 859–864 (1996).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 21.

    Solé, R. V., Ferrer, R., González-García, I., Quer, J. & Domingo, E. Red queen dynamics, competition and critical points in a model of RNA virus quasispecies. J. Theor. Biol. 198, 47–59 (1999).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 22.

    Stern, A. & Sorek, R. The phage-host arms race: shaping the evolution of microbes. Bioessays 33, 43–51 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 23.

    Daugherty, M. D. & Malik, H. S. Rules of engagement: molecular insights from host-virus arms races. Annu. Rev. Genet. 46, 677–700 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 24.

    Tegally, H. et al. Sixteen novel lineages of SARS-CoV-2 in South Africa. Nat. Med. 27, 440–446 (2021).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 25.

    Lederberg, J. in Emerging Viruses (ed. Morse, S. S.) 3–9 (Oxford University Press, 1993).

  • 26.

    Baltimore, D. Expression of animal virus genomes. Microbiol. Mol. Biol. Rev. 35, 235–241 (1971).

    CAS 

    Google Scholar 

  • 27.

    Coutinho, F. H., Edwards, R. A. & Rodríguez-Valera, F. Charting the diversity of uncultured viruses of archaea and bacteria. BMC Biol. 17, 109 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 28.

    King, A. M. Q., Adams, M. J., Carstens, E. B. & Lefkowitz, E. J. (eds) Virus Taxonomy. 163–173 (Elsevier, 2012).

  • 29.

    Forterre, P. The virocell concept and environmental microbiology. ISME J. 7, 233–236 (2013). Among the first reports articulating the viewpoint that infected cells undergoing active virus replication should be recognized as the ‘living form’ of a virus known as a virocell.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 30.

    Lowen, A. C. Constraints, drivers, and implications of influenza A virus reassortment. Annu. Rev. Virol. 4, 105–121 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 31.

    Mahner, M. & Kary, M. What exactly are genomes, genotypes and phenotypes? And what about phenomes? J. Theor. Biol. 186, 55–63 (1997).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 32.

    Edwards, K. F. & Steward, G. F. Host traits drive viral life histories across phytoplankton viruses. Am. Nat. 191, 566–581 (2018). Examines the inter-relationships between virus traits and their consequences for population dynamics and the evolution of burst size.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 33.

    Flint, S. J., Racaniello, V. R., Rall, G. F., Skalka, A. M. & Enquist, L. W. Principles of Virology 4th Edn (Wiley, 2015).

  • 34.

    Ghabrial, S. A., Castón, J. R., Jiang, D., Nibert, M. L. & Suzuki, N. 50-plus years of fungal viruses. Virology 479–480, 356–368 (2015).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 35.

    Dunigan, D. D. et al. Chloroviruses lure hosts through long-distance chemical signaling. J. Virol. 93, e01688-18 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 36.

    Anantharaman, K. et al. Sulfur oxidation genes in diverse deep-sea viruses. Science 344, 757–760 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 37.

    Mann, N. H., Cook, A., Millard, A., Bailey, S. & Clokie, M. Bacterial photosynthesis genes in a virus. Nature 424, 741 (2003). Shows how the virus genome interacts with the host to facilitate virus reproduction.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 38.

    Mavrich, T. N. & Hatfull, G. F. Evolution of superinfection immunity in cluster A mycobacteriophages. mBio 10, e00971-19 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 39.

    Marine, R. L., Nasko, D. J., Wray, J., Polson, S. W. & Wommack, K. E. Novel chaperonins are prevalent in the virioplankton and demonstrate links to viral biology and ecology. ISME J. 11, 2479–2491 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 40.

    ICTV. Virus Taxonomy: The ICTV Report on Virus Classification and Taxon Nomenclature. https://talk.ictvonline.org/ictv-reports/ictv_9th_report/ (2019).

  • 41.

    Ojosnegros, S. et al. Viral genome segmentation can result from a trade-off between genetic content and particle stability. PLoS Genet 7, e1001344 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 42.

    Belshaw, R., Pybus, O. G. & Rambaut, A. The evolution of genome compression and genomic novelty in RNA viruses. Genome Res. 17, 1496–1504 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 43.

    Van Etten, J. L., Agarkova, I. V. & Dunigan, D. D. Chloroviruses. Viruses 12, 20 (2020).

    Article 
    CAS 

    Google Scholar 

  • 44.

    Iranzo, J. & Manrubia, S. C. Evolutionary dynamics of genome segmentation in multipartite viruses. Proc. Biol. Sci. 279, 3812–3819 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 45.

    Kellogg, C. A. & Paul, J. H. Degree of ultraviolet radiation damage and repair capabilities are related to G+C content in marine vibriophages. Aquat. Microb. Ecol. 27, 13–20 (2002).

    Article 

    Google Scholar 

  • 46.

    Violle, C. et al. Let the concept of trait be functional! Oikos 116, 882–892 (2007).

    Article 

    Google Scholar 

  • 47.

    Edwards, K. F., Steward, G. F. & Schvarcz, C. R. Making sense of virus size and the tradeoffs shaping viral fitness. Ecol. Lett. 24, 363–373 (2021).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 48.

    Bonachela, J. A. & Levin, S. A. Evolutionary comparison between viral lysis rate and latent period. J. Theor. Biol. 345, 32–42 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 49.

    Yashchenko, V. V., Gavrilova, O. V., Rautian, M. S. & Jakobsen, K. S. Association of Paramecium bursaria Chlorella viruses with Paramecium bursaria cells: ultrastructural studies. Eur. J. Protistol. 48, 149–159 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 50.

    DeLong, J. P., Al-Ameeli, Z., Duncan, G., Van Etten, J. L. & Dunigan, D. D. Predators catalyze an increase in chloroviruses by foraging on the symbiotic hosts of zoochlorellae. Proc. Natl Acad. Sci. USA 113, 13780–13784 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 51.

    Wang, I.-N. Lysis timing and bacteriophage fitness. Genetics 172, 17–26 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 52.

    Smith, C. & Fretwell, S. The optimal balance between size and number of offspring. Am. Nat. 108, 499–506 (1974).

    Article 

    Google Scholar 

  • 53.

    You, L., Suthers, P. F. & Yin, J. Effects of Escherichia coli physiology on growth of phage T7 In vivo and in silico. J. Bacteriol. 184, 1888–1894 (2002).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 54.

    Swan, B. K. et al. Prevalent genome streamlining and latitudinal divergence of planktonic bacteria in the surface ocean. Proc. Natl Acad. Sci. USA 110, 11463–11468 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 55.

    Hellweger, F. L. Carrying photosynthesis genes increases ecological fitness of cyanophage in silico. Environ. Microbiol. 11, 1386–1394 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 56.

    Schenk, H. & Sieber, M. Bacteriophage can promote the emergence of physiologically sub-optimal host phenotypes. bioRxiv https://doi.org/10.1101/621524 (2019).

    Article 

    Google Scholar 

  • 57.

    Howard-Varona, C. et al. Multiple mechanisms drive phage infection efficiency in nearly identical hosts. ISME J. 12, 1605–1618 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 58.

    Zimmerman, A. E. et al. Metabolic and biogeochemical consequences of viral infection in aquatic ecosystems. Nat. Rev. Microbiol. 18, 21–34 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 59.

    Grove, J. & Marsh, M. The cell biology of receptor-mediated virus entry. J. Cell Biol. 195, 1071–1082 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 60.

    McFadden, G., Mohamed, M. R., Rahman, M. M. & Bartee, E. Cytokine determinants of viral tropism. Nat. Rev. Immunol. 9, 645–655 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 61.

    Bernheim, A. & Sorek, R. The pan-immune system of bacteria: antiviral defence as a community resource. Nat. Rev. Microbiol. 18, 113–119 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 62.

    Nussenzweig, P. M. & Marraffini, L. A. Molecular mechanisms of CRISPR-Cas immunity in bacteria. Annu. Rev. Genet. 54, 93–120 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 63.

    Hampton, H. G., Watson, B. N. J. & Fineran, P. C. The arms race between bacteria and their phage foes. Nature 577, 327–336 (2020). An overview of the mechanisms and phenotypes related to phage infection and host defence mechanisms.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 64.

    Samson, J. E., Magadán, A. H., Sabri, M. & Moineau, S. Revenge of the phages: defeating bacterial defences. Nat. Rev. Microbiol. 11, 675–687 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 65.

    Flores, C. O., Meyer, J. R., Valverde, S., Farr, L. & Weitz, J. S. Statistical structure of host–phage interactions. Proc. Natl Acad. Sci. USA 108, E288–E297 (2011). Demonstrates the role of virus host range in generating community-wide patterns of host–phage interactions.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 66.

    Regoes, R. R. & Bonhoeffer, S. The HIV coreceptor switch: a population dynamical perspective. Trends Microbiol. 13, 269–277 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 67.

    Atkinson, D., Ciotti, B. J. & Montagnes, D. J. Protists decrease in size linearly with temperature: ca. 2.5% C-1. Proc. R. Soc. Lond. B 270, 2605–2611 (2003).

    Article 

    Google Scholar 

  • 68.

    Falkowski, P. G. in Primary Productivity in the Sea (ed. Falkowski, P. G.) 99–119 (Springer, 1980).

  • 69.

    Salsbery, M. E. & DeLong, J. P. The benefit of algae endosymbionts in Paramecium bursariais temperature dependent. Evol. Ecol. Res. 19, 669–678 (2018).

    Google Scholar 

  • 70.

    Kimmance, S. A., Atkinson, D. & Montagnes, D. J. S. Do temperature–food interactions matter? Responses of production and its components in the model heterotrophic flagellate Oxyrrhis marina. Aquat. Microb. Ecol. 42, 63–73 (2006).

    Article 

    Google Scholar 

  • 71.

    Maat, D. S., van Bleijswijk, J. D. L., Witte, H. J. & Brussaard, C. P. D. Virus production in phosphorus-limited Micromonas pusilla stimulated by a supply of naturally low concentrations of different phosphorus sources, far into the lytic cycle. FEMS Microbiol. Ecol. 92, fiw136 (2016).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 72.

    Amla, D. V., Rowell, P. & Stewart, W. D. P. Metabolic changes associated with cyanophage N-1 infection of the cyanobacterium Nostoc muscorum. Arch. Microbiol. 148, 321–327 (1987).

    CAS 
    Article 

    Google Scholar 

  • 73.

    Hadas, H., Einav, M., Fishov, I. & Zaritsky, A. Bacteriophage T4 development depends on the physiology of its host Escherichia coli. Microbiology 143, 179–185 (1997).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 74.

    Demory, D. et al. Temperature is a key factor in Micromonas–virus interactions. ISME J. 11, 601–612 (2017). Shows the effect of temperature on the kinetics, phenotypes and life history strategies of prasinoviruses.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 75.

    Schachtele, C. F., Oman, R. W. & Anderson, D. L. Effect of elevated temperature on deoxyribonucleic acid synthesis in bacteriophage φ29-infected Bacillus amyloliquefaciens. J. Virol. 6, 430–437 (1970).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 76.

    Choua, M., Heath, M. R., Speirs, D. C. & Bonachela, J. A. The effect of viral plasticity on the persistence of host-virus systems. J. Theor. Biol. 498, 110263 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 77.

    Ni, T. & Zeng, Q. Diel infection of cyanobacteria by cyanophages. Front. Mar. Sci. https://doi.org/10.3389/fmars.2015.00123 (2016).

    Article 

    Google Scholar 

  • 78.

    Sakowski, E. G. et al. Ribonucleotide reductases reveal novel viral diversity and predict biological and ecological features of unknown marine viruses. Proc. Natl Acad. Sci. USA 111, 15786–15791 (2014). Demonstrates that genomic features in the viral replicon (that is, module of genes responsible for viral genome replication) may predict the biogeographical distribution of viruses.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 79.

    Reeson, A. F. et al. Effects of phenotypic plasticity on pathogen transmission in the field in a Lepidoptera-NPV system. Oecologia 124, 373–380 (2000).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 80.

    Stearns, S. C. The evolutionary significance of phenotypic plasticity. BioScience 39, 436–445 (1989).

    Article 

    Google Scholar 

  • 81.

    Leggett, H. C., Benmayor, R., Hodgson, D. J. & Buckling, A. Experimental evolution of adaptive phenotypic plasticity in a parasite. Curr. Biol. 23, 139–142 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 82.

    Oppenheim, A. B., Kobiler, O., Stavans, J., Court, D. L. & Adhya, S. Switches in bacteriophage lambda development. Annu. Rev. Genet. 39, 409–429 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 83.

    Erez, Z. et al. Communication between viruses guides lysis–lysogeny decisions. Nature 541, 488–493 (2017). Demonstrates the use of communication peptides that determine lysogeny in temperate phages.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 84.

    Weitz, J. S., Li, G., Gulbudak, H., Cortez, M. H. & Whitaker, R. J. Viral invasion fitness across a continuum from lysis to latency. Virus Evol. 5, vez006 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 85.

    Labonté, J. M. et al. Single cell genomics indicates horizontal gene transfer and viral infections in a deep subsurface Firmicutes population. Front. Microbiol. 6, 349 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 86.

    Koskella, B. & Brockhurst, M. A. Bacteria–phage coevolution as a driver of ecological and evolutionary processes in microbial communities. FEMS Microbiol. Rev. 38, 916–931 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 87.

    Meyer, J. R. et al. Repeatability and contingency in the evolution of a key innovation in phage lambda. Science 335, 428–432 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 88.

    Marston, M. F. et al. Rapid diversification of coevolving marine Synechococcus and a virus. Proc. Natl Acad. Sci. USA 109, 4544–4549 (2012). Demonstrates the rapid co-evolution of virus and host but highlights the challenge of identifying the critical phenotypes mediating the interaction.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 89.

    Frickel, J., Feulner, P. G. D., Karakoc, E. & Becks, L. Population size changes and selection drive patterns of parallel evolution in a host–virus system. Nat. Commun. 9, 1706 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 90.

    Knowles, B. et al. Temperate infection in a virus–host system previously known for virulent dynamics. Nat. Commun. 11, 4626 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 91.

    Wang, I.-N., Dykhuizen, D. E. & Slobodkin, L. B. The evolution of phage lysis timing. Evol. Ecol. 10, 545–558 (1996).

    Article 

    Google Scholar 

  • 92.

    Abedon, S. T., Hyman, P. & Thomas, C. Experimental examination of bacteriophage latent-period evolution as a response to bacterial availability. Appl. Environ. Microbiol. 69, 7499–7506 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 93.

    Palkovacs, E. P. & Hendry, A. P. Eco-evolutionary dynamics: intertwining ecological and evolutionary processes in contemporary time. F1000 Biol. Rep. 2, 1 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 94.

    Brown, C. M., Lawrence, J. E. & Campbell, D. A. Are phytoplankton population density maxima predictable through analysis of host and viral genomic DNA content? J. Mar. Biol. Assoc. UK 86, 491–498 (2006).

    CAS 
    Article 

    Google Scholar 

  • 95.

    Wommack, K. E. & Colwell, R. R. Virioplankton: viruses in aquatic ecosystems. Microbiol. Mol. Biol. Rev. 64, 69–114 (2000).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 96.

    Weitz, J. S. et al. A multitrophic model to quantify the effects of marine viruses on microbial food webs and ecosystem processes. ISME J. 9, 1352–1364 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 97.

    Poorvin, L., Rinta-Kanto, J. M., Hutchins, D. A. & Wilhelm, S. W. Viral release of iron and its bioavailability to marine plankton. Limnol. Oceanogr. 49, 1734–1741 (2004).

    CAS 
    Article 

    Google Scholar 

  • 98.

    Shelford, E. J., Middelboe, M., Møller, E. F. & Suttle, C. A. Virus-driven nitrogen cycling enhances phytoplankton growth. Aquat. Microb. Ecol. 66, 41–46 (2012).

    Article 

    Google Scholar 

  • 99.

    Ankrah, N. Y. D. et al. Phage infection of an environmentally relevant marine bacterium alters host metabolism and lysate composition. ISME J. 8, 1089–1100 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 100.

    Jover, L. F., Effler, T. C., Buchan, A., Wilhelm, S. W. & Weitz, J. S. The elemental composition of virus particles: implications for marine biogeochemical cycles. Nat. Rev. Microbiol. 12, 519–528 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 101.

    Dawkins, R. The Extended Phenotype: The Long Reach of the Gene (Oxford University Press, 1999).

  • 102.

    Dawkins, R. Extended phenotype–but not too extended. A reply to Laland, Turner and Jablonka. Biol. Philosophy 19, 377–396 (2004).

    Article 

    Google Scholar 

  • 103.

    Ogata, H. Habitat alterations by viruses: strategies by Tupanviruses and others. Microbes Environ. 33, 117–119 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 104.

    Abrahão, J. et al. Tailed giant Tupanvirus possesses the most complete translational apparatus of the known virosphere. Nat. Commun. 9, 749 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 105.

    Clark, H. F. & Wiktor, T. J. Plasticity of phenotypic characters of rabies-related viroses: spontaneous variation in the plaque morphology, virulence, and temperature-sensitivity characters of serially propagated Lagos bat and Mokola viruses. J. Infect. Dis. 130, 608–618 (1974).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 106.

    Abedon, S. T. & Culler, R. R. Optimizing bacteriophage plaque fecundity. J. Theor. Biol. 249, 582–592 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 107.

    Luo, E., Eppley, J. M., Romano, A. E., Mende, D. R. & DeLong, E. F. Double-stranded DNA virioplankton dynamics and reproductive strategies in the oligotrophic open ocean water column. ISME J. 14, 1304–1315 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 108.

    Bidle, K. D. Elucidating marine virus ecology through a unified heartbeat. Proc. Natl Acad. Sci. USA 111, 15606–15607 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 109.

    Schmidt, H. F., Sakowski, E. G., Williamson, S. J., Polson, S. W. & Wommack, K. E. Shotgun metagenomics indicates novel family A DNA polymerases predominate within marine virioplankton. ISME J. 8, 103–114 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 110.

    Nasko, D. J. et al. Family A DNA polymerase phylogeny uncovers diversity and replication gene organization in the virioplankton. Front. Microbiol. 9, 3053 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 111.

    Harrison, A. O., Moore, R. M., Polson, S. W. & Wommack, K. E. Reannotation of the ribonucleotide reductase in a cyanophage reveals life history strategies within the virioplankton. Front. Microbiol. 10, 134 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 112.

    Breitbart, M. Marine viruses: truth or dare. Annu. Rev. Mar. Sci. 4, 425–448 (2012).

    Article 

    Google Scholar 

  • 113.

    Hurwitz, B. L. & U’Ren, J. M. Viral metabolic reprogramming in marine ecosystems. Curr. Opin. Microbiol. 31, 161–168 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 114.

    Lindell, D., Jaffe, J. D., Johnson, Z. I., Church, G. M. & Chisholm, S. W. Photosynthesis genes in marine viruses yield proteins during host infection. Nature 438, 86–89 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 115.

    Rusconi, R., Garren, M. & Stocker, R. Microfluidics expanding the frontiers of microbial ecology. Annu. Rev. Biophys. 43, 65–91 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 116.

    Walker, G. M., Ozers, M. S. & Beebe, D. J. Cell infection within a microfluidic device using virus gradients. Sens. Actuators B Chem. 98, 347–355 (2004).

    CAS 
    Article 

    Google Scholar 

  • 117.

    Cimetta, E. et al. Microfluidic-driven viral infection on cell cultures: theoretical and experimental study. Biomicrofluidics 6, 024127 (2012).

    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 118.

    Xu, N. et al. A microfluidic platform for real-time and in situ monitoring of virus infection process. Biomicrofluidics 6, 034122 (2012).

    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 119.

    Akin, D., Li, H. & Bashir, R. Real-time virus trapping and fluorescent imaging in microfluidic devices. Nano Lett. 4, 257–259 (2004).

    CAS 
    Article 

    Google Scholar 

  • 120.

    Yu, J. Q. et al. Droplet optofluidic imaging for λ-bacteriophage detection via co-culture with host cell Escherichia coli. Lab. Chip 14, 3519–3524 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 121.

    Mashaghi, S. & van Oijen, A. M. Droplet microfluidics for kinetic studies of viral fusion. Biomicrofluidics 10, 024102 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 122.

    Fischer, A. E. et al. A high-throughput drop microfluidic system for virus culture and analysis. J. Virol. Methods 213, 111–117 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Researchers design sensors to rapidly detect plant hormones

    Microdiversity characterizes prevalent phylogenetic clades in the glacier-fed stream microbiome