in

Toxicity thresholds of nine herbicides to coral symbionts (Symbiodiniaceae)

  • 1.

    Castillo, L. E., de la Cruz, E. & Ruepert, C. Ecotoxicology and pesticides in tropical aquatic ecosystems of Central America. Environ. Toxicol. Chem. 16, 41–51. https://doi.org/10.1002/etc.5620160104 (1997).

    Article 
    CAS 

    Google Scholar 

  • 2.

    Moreno-González, R. & León, V. Presence and distribution of current-use pesticides in surface marine sediments from a Mediterranean coastal lagoon (SE Spain). Environ. Sci. Pollut. Res. 24, 8033–8048. https://doi.org/10.1007/s11356-017-8456-0 (2017).

    Article 
    CAS 

    Google Scholar 

  • 3.

    Hernández-Romero, A. H., Tovilla-Hernández, C., Malo, E. A. & Bello-Mendoza, R. Water quality and presence of pesticides in a tropical coastal wetland in southern Mexico. Mar. Pollut. Bull. 48, 1130–1141. https://doi.org/10.1016/j.marpolbul.2004.01.003 (2004).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • 4.

    Wurl, O. & Obbard, J. P. Organochlorine pesticides, polychlorinated biphenyls and polybrominated diphenyl ethers in Singapore’s coastal marine sediments. Chemosphere 58, 925–933. https://doi.org/10.1016/j.chemosphere.2004.09.054 (2005).

    ADS 
    Article 
    PubMed 
    CAS 

    Google Scholar 

  • 5.

    Carvalho, F. P. et al. Organic contaminants in the marine environment of Manila Bay, Philippines. Arch. Environ. Contam. Toxicol. 57, 348–358. https://doi.org/10.1007/s00244-008-9271-x (2009).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • 6.

    Australian Government and Queensland Government. Reef 2050 Water Quality Improvement Plan, Monitoring Program. (Australian and Queensland Governments, 2018). https://www.reefplan.qld.gov.au/tracking-progress/paddock-to-reef/modelling-and-monitoring.

  • 7.

    O’Brien, D. et al. Spatial and temporal variability in pesticide exposure downstream of a heavily irrigated cropping area: Application of different monitoring techniques. J. Agric. Food Chem. 64, 3975–3989. https://doi.org/10.1021/acs.jafc.5b04710 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • 8.

    Warne, M. St. J., Smith, R. & Turner, R. Analysis of pesticide mixtures discharged to the lagoon of the Great Barrier Reef, Australia. Environ. Pollut. 265, 114088. https://doi.org/10.1016/j.envpol.2020.114088 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • 9.

    Shaw, M. et al. Monitoring pesticides in the Great Barrier Reef. Mar. Pollut. Bull. 60, 113–122. https://doi.org/10.1016/j.marpolbul.2009.08.026 (2010).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • 10.

    Kennedy, K. et al. The influence of a season of extreme wet weather events on exposure of the World Heritage Area Great Barrier Reef to pesticides. Mar. Pollut. Bull. 64, 1495–1507. https://doi.org/10.1016/j.marpolbul.2012.05.014 (2012).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • 11.

    Mercurio, P. et al. Degradation of herbicides in the tropical marine environment: Influence of light and sediment. PLoS ONE 11, e0165890. https://doi.org/10.1371/journal.pone.0165890 (2016).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • 12.

    Gallen, C. et al. Marine Monitoring Program: Annual report for inshore pesticide monitoring 2017–18. Report for the Great Barrier Reef Marine Park Authority. http://elibrary.gbrmpa.gov.au/jspui/handle/11017/3489. (2019).

  • 13.

    Smith, R. et al. Large-scale pesticide monitoring across Great Barrier Reef catchments–paddock to reef integrated monitoring, modelling and reporting program. Mar. Pollut. Bull. 65, 117–127. https://doi.org/10.1016/j.marpolbul.2011.08.010 (2012).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • 14.

    Oettmeier, W. Herbicide resistance and supersensitivity in photosystem II. Cell. Mol. Life Sci. 55, 1255–1277. https://doi.org/10.1007/s000180050370 (1999).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • 15.

    Davis, A., Lewis, S., Brodie, J. & Benson, A. The potential benefits of herbicide regulation: A cautionary note for the Great Barrier Reef catchment area. Sci. Total Environ. 490, 81–92. https://doi.org/10.1016/j.scitotenv.2014.04.005 (2014).

    ADS 
    Article 
    PubMed 
    CAS 

    Google Scholar 

  • 16.

    King, J., Alexander, F. & Brodie, J. Regulation of pesticides in Australia: The Great Barrier Reef as a case study for evaluating effectiveness. Agr. Ecosyst. Environ. 180, 54–67. https://doi.org/10.1016/j.agee.2012.07.001 (2013).

    Article 

    Google Scholar 

  • 17.

    Devlin, M. et al. Advancing our Understanding of the Source, Management, Transport and Impacts of Pesticides on the Great Barrier Reef 2011–2015. Report for the Queensland Department of Environment and Heritage Protection. (Tropical Water & Aquatic Ecosytem Research (TropWATER) Publication, James Cook University, 2015). https://www.qld.gov.au/environment/assets/documents/agriculture/sustainable-farming/reef/rp104c-pesticide-report.pdf/.

  • 18.

    Flores, F., Collier, C. J., Mercurio, P. & Negri, A. P. Phytotoxicity of four photosystem II herbicides to tropical seagrasses. PLoS ONE 8, e75798. https://doi.org/10.1371/journal.pone.0075798 (2013).

    ADS 
    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • 19.

    Haynes, D. et al. The occurrence and impact of herbicides in the Great Barrier Reef, Australia. Reef Res. 10, 3–5 (2000).

    Google Scholar 

  • 20.

    Negri, A. P., Flores, F., Röthig, T. & Uthicke, S. Herbicides increase the vulnerability of corals to rising sea surface temperature. Limnol. Oceanogr. 56, 471–485. https://doi.org/10.4319/lo.2011.56.2.0471 (2011).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 21.

    Marques, J. A., Flores, F., Bianchini, A., Uthicke, S. & Negri, A. P. Acclimation history modulates effect size of calcareous algae (Halimeda opuntia) to herbicide exposure under future climate scenarios. Sci. Total Environ. 736, 140308. https://doi.org/10.1016/j.scitotenv.2020.140308 (2020).

    Article 
    CAS 

    Google Scholar 

  • 22.

    van Dam, J. W., Negri, A. P., Mueller, J. F. & Uthicke, S. Symbiont-specific responses in foraminifera to the herbicide diuron. Mar. Pollut. Bull. 65, 373–383. https://doi.org/10.1016/j.marpolbul.2011.08.008 (2012).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • 23.

    Thomas, M. C., Flores, F., Kaserzon, S., Fisher, R. & Negri, A. P. Toxicity of ten herbicides to the tropical marine microalgae Rhodomonas salina. Sci. Rep. 10, 1–16. https://doi.org/10.1038/s41598-020-64116-y (2020).

    Article 
    CAS 

    Google Scholar 

  • 24.

    Magnusson, M., Heimann, K. & Negri, A. P. Comparative effects of herbicides on photosynthesis and growth of tropical estuarine microalgae. Mar. Pollut. Bull. 56, 1545–1552. https://doi.org/10.1016/j.marpolbul.2008.05.023 (2008).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • 25.

    Muscatine, L. The role of symbiotic algae in carbon and energy flux in reef corals. Coral Reefs 25, 1–29 (1990).

    Google Scholar 

  • 26.

    Oettmeier, W. Herbicides of photosystems II. In Structure, Function and Molecular Biology (ed. Barber, J.) 349–408 (Elsevier, 1992).

    Google Scholar 

  • 27.

    Jones, R. J., Muller, J., Haynes, D. & Schreiber, U. Effects of herbicides diuron and atrazine on corals of the Great Barrier Reef, Australia. Mar. Ecol. Prog. Ser. 251, 153–167. https://doi.org/10.3354/meps251153 (2003).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 28.

    Jones, R. J. & Kerswell, A. P. Phytotoxicity of Photosystem II (PSII) herbicides to coral. Mar. Ecol. Prog. Ser. 261, 149–159. https://doi.org/10.3354/meps261149 (2003).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 29.

    Cantin, N. E., Negri, A. P. & Willis, B. L. Photoinhibition from chronic herbicide exposure reduces reproductive output of reef-building corals. Mar. Ecol. Prog. Ser. 344, 81–93. https://doi.org/10.3354/meps07059 (2007).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 30.

    Negri, A. et al. Effects of the herbicide diuron on the early life history stages of coral. Mar. Pollut. Bull. 51, 370–383. https://doi.org/10.1016/j.marpolbul.2004.10.053 (2005).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • 31.

    Decelle, J. et al. Worldwide occurrence and activity of the reef-building coral symbiont Symbiodinium in the open ocean. Curr. Biol. 28, 3625–3633. https://doi.org/10.1016/j.cub.2018.09.024 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • 32.

    Baker, A. C. Reef corals bleach to survive change. Nature 411, 765–766. https://doi.org/10.1038/35081151 (2001).

    ADS 
    Article 
    PubMed 
    CAS 

    Google Scholar 

  • 33.

    Muller-Parker, G., D’elia, C. F. & Cook, C. B. Coral Reefs in the Anthropocene 99–116 (Springer, 2015). https://pdfs.semanticscholar.org/191e119/119ba111eab744a4054c4068f4057a4003bb4058bd4001b9628.pdf.

  • 34.

    Chakravarti, L. J., Negri, A. P. & Oppen, M. J. Thermal and herbicide tolerances of chromerid algae and their ability to form a symbiosis with corals. Front. Microbiol. 10, 173. https://doi.org/10.3389/fmicb.2019.00173 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 35.

    van Dam, J., Uthicke, S., Beltran, V., Mueller, J. & Negri, A. Combined thermal and herbicide stress in functionally diverse coral symbionts. Environ. Pollut. 204, 271–279. https://doi.org/10.1016/j.envpol.2015.05.013 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • 36.

    Mercurio, P. et al. Contribution of transformation products towards the total herbicide toxicity to tropical marine organisms. Sci. Rep. 8, 1–12. https://doi.org/10.1038/s41598-018-23153-4 (2018).

    Article 
    CAS 

    Google Scholar 

  • 37.

    Magnusson, M., Heimann, K., Ridd, M. & Negri, A. P. Pesticide contamination and phytotoxicity of sediment interstitial water to tropical benthic microalgae. Water Res. 47, 5211–5221. https://doi.org/10.1016/j.watres.2013.06.003 (2013).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • 38.

    Thomas, M. C., Flores, F., Kaserzon, S., Reeks, T. & Negri, A. P. Toxicity of the herbicides diuron, propazine, tebuthiuron, and haloxyfop to the diatom Chaetoceros muelleri. Sci. Rep. 10, 19592. https://doi.org/10.1038/s41598-020-76363-0 (2020).

    ADS 
    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • 39.

    Warne, M. St. J., King, O. & Smith, R. Ecotoxicity thresholds for ametryn, diuron, hexazinone and simazine in fresh and marine waters. Environ. Sci. Pollut. Res. 25, 3151–3169. https://doi.org/10.1007/s11356-017-1097-5 (2018).

    Article 
    CAS 

    Google Scholar 

  • 40.

    Traas, T. P. et al. In Species Sensitivity Distributions in Ecotoxicology (eds Posthuma, L. et al.) 315–344 (CRC Press, 2002).

    Google Scholar 

  • 41.

    ANZG. Australian and New Zealand Guidelines for Fresh and Marine Water Quality. 1–103 (Australian and New Zealand Governments and Australian State and Territory Governments, 2018). http://waterquality.gov.au/anz-guidelines.

  • 42.

    King, O., Smith, R., Mann, R. & Warne, M. St. J. Proposed Aquatic Ecosystem Protection Guideline Values for Pesticides Commonly Used in the Great Barrier Reef catchment Area: Part 2— Bromacil, Chlorothalonil, Fipronil, Fluometuron, Fluroxypyr, Haloxyfop, MCPA, Pendimethalin, Prometryn, Propazine, Propiconazole, Terbutryn, Triclopyr and Terbuthylazine. (Department of Environment and Science, 2017). https://www.publications.qld.gov.au/dataset/proposed-guideline-values-27-pesticides-used-in-the-gbr-catchment.

  • 43.

    King, O., Smith, R., Mann, R. & Warne, M. St. J. Proposed Aquatic Ecosystem Protection Guideline Values for Pesticides Commonly Used in the Great Barrier Reef Catchment Area: Part 1–2, 4-D, Ametryn, Diuron, Glyphosate, Hexazinone, Imazapic, Imidacloprid, Isoxaflutole, Metolachlor, Metribuzin, Metsulfuron-methyl, Simazine and Tebuthiuron 296 (Department of Environment and Science, 2017). https://www.publications.qld.gov.au/dataset/proposed-guideline-values-27-pesticides-used-in-the-gbr-catchment.

  • 44.

    Marie, D., Rigaut-Jalabert, F. & Vaulot, D. An improved protocol for flow cytometry analysis of phytoplankton cultures and natural samples. Cytom. Part A 85, 962–968. https://doi.org/10.1002/cyto.a.22517 (2014).

    Article 
    CAS 

    Google Scholar 

  • 45.

    Warne, M. St. J. et al. Revised Method for Deriving Australian and New Zealand Water Quality Guideline Values for Toxicants: Update of 2015 Version. Prepared for the Revision of the Australian and New Zealand Guidelines for Fresh and Marine Water Quality 48 (Australian and New Zealand Governments and Australian State and Territory Governments, 2018). https://www.waterquality.gov.au/sites/default/files/documents/warne-wqg-derivation2018.pdf.

  • 46.

    Vinyard, D. J., Ananyev, G. M. & Charles Dismukes, G. Photosystem II: The reaction center of oxygenic photosynthesis. Annu. Rev. Biochem. 82, 577–606. https://doi.org/10.1146/annurev-biochem-070511-100425 (2013).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • 47.

    Haworth, P. & Steinback, K. E. Interaction of herbicides and quinone with the qb-protein of the diuron-resistant Chlamydomonas reinhardtii mutant Dr2. Plant Physiol. 83, 1027–1031. https://doi.org/10.1104/pp.83.4.1027 (1987).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • 48.

    USEPA. ECOTOX User Guide: ECOTOXicology Database System. Version 5.0. (United States Environmental Protection Agency, 2019) http://cfpub.epa.gov/ecotox/.

  • 49.

    Magnusson, M. Effects of Priority Herbicides and Their Breakdown Products on Tropical, ESTUARINE Microalgae of the Great Barrier Reef Lagoon. PhD thesis, James Cook University (2009).

  • 50.

    MacBean, C. The Pesticide Manual: A World Compendium (British Crop Protection Council, 2012).

    Google Scholar 

  • 51.

    Haq, S., Bachvaroff, T. R. & Place, A. R. Characterization of acetyl-CoA carboxylases in the basal dinoflagellate Amphidinium carterae. Mar. Drugs 15, 149. https://doi.org/10.3390/md15060149 (2017).

    Article 
    PubMed Central 
    CAS 

    Google Scholar 

  • 52.

    Tang, C. Y., Huang, Z. & Allen, H. C. Interfacial water structure and effects of Mg2+ and Ca2+ binding to the COOH headgroup of a palmitic acid monolayer studied by sum frequency spectroscopy. J. Phys. Chem. B 115, 34–40. https://doi.org/10.1021/jp1062447 (2011).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • 53.

    Brzozowska, A., Duits, M. H. & Mugele, F. Stability of stearic acid monolayers on artificial sea water. Colloid Surf. A 407, 38–48 (2012).

    Article 
    CAS 

    Google Scholar 

  • 54.

    McCourt, J. & Duggleby, R. Acetohydroxyacid synthase and its role in the biosynthetic pathway for branched-chain amino acids. Amino Acids 31, 173–210. https://doi.org/10.1007/s00726-005-0297-3 (2006).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • 55.

    Genty, B., Briantais, J.-M. & Baker, N. R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. BBA 990, 87–92. https://doi.org/10.1016/S0304-4165(89)80016-9 (1989).

    Article 
    CAS 

    Google Scholar 

  • 56.

    Jeong, H. J. et al. Heterotrophic feeding as a newly identified survival strategy of the dinoflagellate Symbiodinium. Proc. Natl. Acad. Sci. U.S.A. 109, 12604–12609. https://doi.org/10.1073/pnas.1204302109 (2012).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 57.

    Ralph, P., Smith, R., Macinnis-Ng, C. & Seery, C. Use of fluorescence-based ecotoxicological bioassays in monitoring toxicants and pollution in aquatic systems. Toxicol. Environ. Chem. 89, 589–607. https://doi.org/10.1080/02772240701561593 (2007).

    Article 
    CAS 

    Google Scholar 

  • 58.

    OECD. Test No. 201: Freshwater Alga and Cyanobacteria, Growth Inhibition Test, OECD Guidelines for the Testing of Chemicals, Section 2 (OECD Publishing, 2011).

    Google Scholar 

  • 59.

    Kamei, M., Takayama, K., Ishibashi, H. & Takeuchi, I. Effects of ecologically relevant concentrations of Irgarol 1051 in tropical to subtropical coastal seawater on hermatypic coral Acropora tenuis and its symbiotic dinoflagellates. Mar. Poll. Bull. 150, 110734. https://doi.org/10.1016/j.marpolbul.2019.110734 (2020).

    Article 
    CAS 

    Google Scholar 

  • 60.

    McKenzie, M. R., Templeman, M. A. & Kingsford, M. J. Detecting effects of herbicide runoff: The use of Cassiopea maremetens as a biomonitor to hexazinone. Aquat. Toxicol. 221, 105442. https://doi.org/10.1016/j.aquatox.2020.105442 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • 61.

    Howe, P. L., Reichelt-Brushett, A. J., Clark, M. W. & Seery, C. R. Toxicity estimates for diuron and atrazine for the tropical marine cnidarian Exaiptasia pallida and in-hospite Symbiodinium spp. using PAM chlorophyll-a fluorometry. J. Photochem. Photobiol. B 171, 125–132. https://doi.org/10.1016/j.jphotobiol.2017.05.006 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • 62.

    Takahashi, S., Whitney, S. M. & Badger, M. R. Different thermal sensitivity of the repair of photodamaged photosynthetic machinery in cultured Symbiodinium species. Proc. Natl. Acad. Sci. U.S.A. 106, 3237–3242. https://doi.org/10.1073/pnas.0808363106 (2009).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 63.

    Jones, R. The ecotoxicological effects of Photosystem II herbicides on corals. Mar. Pollut. Bull. 51, 495–506. https://doi.org/10.1016/j.marpolbul.2005.06.027 (2005).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • 64.

    Rowen, D. J., Templeman, M. A. & Kingsford, M. J. Herbicide effects on the growth and photosynthetic efficiency of Cassiopea maremetens. Chemosphere 182, 143–148. https://doi.org/10.1016/j.chemosphere.2017.05.001 (2017).

    ADS 
    Article 
    PubMed 
    CAS 

    Google Scholar 

  • 65.

    Cantin, N. E., van Oppen, M. J., Willis, B. L., Mieog, J. C. & Negri, A. P. Juvenile corals can acquire more carbon from high-performance algal symbionts. Coral Reefs 28, 405. https://doi.org/10.1007/s00338-009-0478-8 (2009).

    ADS 
    Article 

    Google Scholar 

  • 66.

    Fitt, W. & Trench, R. The relation of diel patterns of cell division to diel patterns of motility in the symbiotic dinoflagellate Symbiodinium microadria ticum Freudenthal in culture. New Phytol. 94, 421–432 (1983).

    Article 

    Google Scholar 

  • 67.

    Randall, C. J. et al. Sexual production of corals for reef restoration in the Anthropocene. Mar. Ecol. Prog. Ser. 635, 203–232. https://doi.org/10.3354/meps13206 (2020).

    ADS 
    Article 

    Google Scholar 

  • 68.

    Baird, A. H., Bhagooli, R., Ralph, P. J. & Takahashi, S. Coral bleaching: The role of the host. Trends Ecol. Evol. 24, 16–20. https://doi.org/10.1016/j.tree.2008.09.005 (2009).

    Article 
    PubMed 

    Google Scholar 

  • 69.

    Flores, F., Kaserzon, S., Elisei, G., Ricardo, G. & Negri, A. P. Toxicity thresholds of three insecticides and two fungicides to larvae of the coral Acropora tenuis. PeerJ 8, e9615. https://doi.org/10.7717/peerj.9615 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 70.

    LaJeunesse, T. C. et al. Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. 28, 2570–2580. https://doi.org/10.1016/j.cub.2018.07.008 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • 71.

    Trenfield, M. A. et al. Aluminium, gallium, and molybdenum toxicity to the tropical marine microalga Isochrysis galbana. Environ. Toxicol. Chem. 34, 1833–1840. https://doi.org/10.1002/etc.2996 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • 72.

    Hennige, S., Suggett, D., Warner, M., McDougall, K. & Smith, D. Photobiology of Symbiodinium revisited: Bio-physical and bio-optical signatures. Coral Reefs 28, 179–195. https://doi.org/10.1007/s00338-008-0444-x (2009).

    ADS 
    Article 

    Google Scholar 

  • 73.

    Klueter, A., Trapani, J., Archer, F. I., McIlroy, S. E. & Coffroth, M. A. Comparative growth rates of cultured marine dinoflagellates in the genus Symbiodinium and the effects of temperature and light. PLoS ONE 12, e0187707. https://doi.org/10.1371/journal.pone.0187707 (2017).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • 74.

    Rogers, J. E. & Davis, R. H. Application of a new micro-culturing technique to assess the effects of temperature and salinity on specific growth rates of six Symbiodinium isolates. Bull. Mar. Sci. 79, 113–126 (2006).

    Google Scholar 

  • 75.

    Sakami, T. Effects of temperature, irradiance, salinity and inorganic nitrogen concentration on coral zooxanthellae in culture. Fish. Res. 66, 1006–1013. https://doi.org/10.1046/j.1444-2906.2000.00162.x (2000).

    Article 
    CAS 

    Google Scholar 

  • 76.

    Schreiber, U., Müller, J. F., Haugg, A. & Gademann, R. New type of dual-channel PAM chlorophyll fluorometer for highly sensitive water toxicity biotests. Photosynth. Res. 74, 317–330. https://doi.org/10.1023/A:1021276003145 (2002).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • 77.

    Karim, W., Nakaema, S. & Hidaka, M. Temperature effects on the growth rates and photosynthetic activities of Symbiodinium cells. J. Mar. Sci. Eng. 3, 368–381. https://doi.org/10.3390/jmse3020368 (2015).

    Article 

    Google Scholar 

  • 78.

    Mercurio, P., Mueller, J. F., Eaglesham, G., Flores, F. & Negri, A. P. Herbicide persistence in seawater simulation experiments. PLoS ONE 10, e0136391. https://doi.org/10.1371/journal.pone.0136391 (2015).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • 79.

    Mercurio, P. Herbicide Persistence and Toxicity in the Tropical Marine Environment. PhD thesis, The University of Queensland (2016).

  • 80.

    Fisher, R., Ricardo, G. & Fox, D. jags NEC: A Bayesian No Effect Concentration (NEC) Package. https://github.com/AIMS/NEC-estimation. (2019).

  • 81.

    Fox, D. R. A Bayesian approach for determining the no effect concentration and hazardous concentration in ecotoxicology. Ecotoxicol. Environ. Saf. 73, 123–131. https://doi.org/10.1016/j.ecoenv.2009.09.012 (2010).

    Article 
    PubMed 
    CAS 

    Google Scholar 


  • Source: Ecology - nature.com

    MIT collaborates with Biogen on three-year, $7 million initiative to address climate, health, and equity

    Assessing the origin, genetic structure and demographic history of the common pheasant (Phasianus colchicus) in the introduced European range