in

Transpiration rates of red maple (Acer rubrum L.) differ between management contexts in urban forests of Maryland, USA

  • 1.

    Askarizadeh, A. et al. From rain tanks to catchments: Use of low-impact development to address hydrologic symptoms of the urban stream syndrome. Environ. Sci. Technol. 49, 11264–11280 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 2.

    Shuster, W. D., Bonta, J., Thurston, H., Warnemuende, E. & Smith, D. R. Impacts of impervious surface on watershed hydrology: A review. Urban Water J. 2, 263–275 (2005).

    Google Scholar 

  • 3.

    Walsh, C. J. et al. The urban stream syndrome: Current knowledge and the search for a cure. J. N. Am. Benthol. Soc. 24, 706–723 (2005).

    Google Scholar 

  • 4.

    US EPA. What is Green Infrastructure? US EPA. https://www.epa.gov/green-infrastructure/what-green-infrastructure (2015).

  • 5.

    Hoover, F. A. & Hopton, M. E. Developing a framework for stormwater management: Leveraging ancillary benefits from urban greenspace. Urban Ecosyst. 22, 1139–1148 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 6.

    Zölch, T., Henze, L., Keilholz, P. & Pauleit, S. Regulating urban surface runoff through nature-based solutions—An assessment at the micro-scale. Environ. Res. 157, 135–144 (2017).

    PubMed 

    Google Scholar 

  • 7.

    Konijnendijk, C. C., Ricard, R. M., Kenney, A. & Randrup, T. B. Defining urban forestry—A comparative perspective of North America and Europe. Urban For. Urban Green. 4, 93–103 (2006).

    Google Scholar 

  • 8.

    Berland, A. et al. The role of trees in urban stormwater management. Landsc. Urban Plan. 162, 167–177 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 9.

    Bartens, J., Day, S. D., Harris, J. R., Dove, J. E. & Wynn, T. M. Can urban tree roots improve infiltration through compacted subsoils for stormwater management?. J. Environ. Qual. 37, 2048–2057 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 10.

    Geronimo, F. K. F., Maniquiz-Redillas, M. C., Tobio, J. A. S. & Kim, L. H. Treatment of suspended solids and heavy metals from urban stormwater runoff by a tree box filter. Water Sci. Technol. 69, 2460–2467 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 11.

    Jayasooriya, V. M. & Ng, A. W. M. Tools for modeling of stormwater management and economics of green infrastructure practices: A review. Water Air. Soil Pollut. 225, 2055 (2014).

    ADS 

    Google Scholar 

  • 12.

    Keeley, M. et al. Perspectives on the use of green infrastructure for stormwater management in Cleveland and Milwaukee. Environ. Manag. 51, 1093–1108 (2013).

    ADS 

    Google Scholar 

  • 13.

    Dhakal, K. P. & Chevalier, L. R. Urban stormwater governance: The need for a paradigm shift. Environ. Manag. 57, 1112–1124 (2016).

    ADS 

    Google Scholar 

  • 14.

    Dhakal, K. P. & Chevalier, L. R. Managing urban stormwater for urban sustainability: Barriers and policy solutions for green infrastructure application. J. Environ. Manag. 203, 171–181 (2017).

    Google Scholar 

  • 15.

    Tzoulas, K. et al. Promoting ecosystem and human health in urban areas using Green Infrastructure: A literature review. Landsc. Urban Plan. 81, 167–178 (2007).

    Google Scholar 

  • 16.

    Kuehler, E., Hathaway, J. & Tirpak, A. Quantifying the benefits of urban forest systems as a component of the green infrastructure stormwater treatment network. Ecohydrology 10, e1813 (2017).

    Google Scholar 

  • 17.

    Law, N. L. & Hanson, J. Recommendations of the Expert Panel to Define BMP Effectiveness for Urban Tree Canopy Expansion. Center for Watershed Protection and Chesapeake Stormwater Network. 236. https://owl.cwp.org/mdocs-posts/recommendations-of-the-expert-panel-to-define-bmp-effectiveness-forurban-tree-canopy-expansion/ (Ellicott City, MD, 2016).

  • 18.

    Phillips, T. H., Baker, M. E., Lautar, K., Yesilonis, I. & Pavao-Zuckerman, M. A. The capacity of urban forest patches to infiltrate stormwater is influenced by soil physical properties and soil moisture. J. Environ. Manag. 246, 11–18 (2019).

    Google Scholar 

  • 19.

    Zipper, S. C., Schatz, J., Kucharik, C. J. & Loheide, S. P. Urban heat island-induced increases in evapotranspirative demand. Geophys. Res. Lett. 44, 873–881 (2017).

    ADS 

    Google Scholar 

  • 20.

    Riikonen, A., Järvi, L. & Nikinmaa, E. Environmental and crown related factors affecting street tree transpiration in Helsinki, Finland. Urban Ecosyst. 19, 1693–1715 (2016).

    Google Scholar 

  • 21.

    Asawa, T., Kiyono, T. & Hoyano, A. Continuous measurement of whole-tree water balance for studying urban tree transpiration. Hydrol. Process. 31, 3056–3068 (2017).

    ADS 

    Google Scholar 

  • 22.

    Hagishima, A., Narita, K. & Tanimoto, J. Field experiment on transpiration from isolated urban plants. Hydrol. Process. 21, 1217–1222 (2007).

    ADS 

    Google Scholar 

  • 23.

    Moriwaki, R. & Kanda, M. Seasonal and diurnal fluxes of radiation, heat, water vapor, and carbon dioxide over a suburban area. J. Appl. Meteorol. 1988–2005(43), 1700–1710 (2004).

    Google Scholar 

  • 24.

    Spronken-Smith, R. A., Oke, T. R. & Lowry, W. P. Advection and the surface energy balance across an irrigated urban park. Int. J. Climatol. 20, 1033–1047 (2000).

    Google Scholar 

  • 25.

    Giraldo, M. A., Jackson, P. & Van-Horne, W. Suburban Forest Change and Vegetation Water Dynamics in Atlanta, USA. Southeast. Geogr. 55, 193–212 (2015).

    Google Scholar 

  • 26.

    Peters, E. B., McFadden, J. P. & Montgomery, R. A. Biological and environmental controls on tree transpiration in a suburban landscape. J. Geophys. Res. Biogeosci. https://doi.org/10.1029/2009JG001266 (2010).

    Article 

    Google Scholar 

  • 27.

    Bhaskar, A. S., Hogan, D. M. & Archfield, S. A. Urban base flow with low impact development. Hydrol. Process. 30, 3156–3171 (2016).

    ADS 

    Google Scholar 

  • 28.

    Peters, E. B., Hiller, R. V. & McFadden, J. P. Seasonal contributions of vegetation types to suburban evapotranspiration. J. Geophys. Res. Biogeosci. https://doi.org/10.1029/2010JG001463 (2011).

    Article 

    Google Scholar 

  • 29.

    Zhou, W., Wang, J. & Cadenasso, M. L. Effects of the spatial configuration of trees on urban heat mitigation: A comparative study. Remote Sens. Environ. 195, 1–12 (2017).

    ADS 

    Google Scholar 

  • 30.

    McPherson, E. G. Urban forestry: The final frontier?. J. For. 101, 20–25 (2003).

    Google Scholar 

  • 31.

    Lefsky, M. A. & McHale, M. R. Volume estimates of trees with complex architecture from terrestrial laser scanning. J. Appl. Remote Sens. 2, 023521 (2008).

    Google Scholar 

  • 32.

    Nowak, D.J. Atmospheric carbon dioxide reduction by Chicago’s urban forest. In Chicago’s urban forest ecosystem: Results of the Chicago urban forest climate project.(eds. McPherson, E. G., Nowak, D. J. & Rowntree, R. A.). 83–94 (Gen. Tech. Rep. NE-186. Radnor, PA: U.S. Department of Agriculture, Forest Service, 1994)

  • 33.

    Pataki, D. E., McCarthy, H. R., Litvak, E. & Pincetl, S. Transpiration of urban forests in the Los Angeles metropolitan area. Ecol. Appl. 21, 661–677 (2011).

    PubMed 

    Google Scholar 

  • 34.

    Yılmaz, S., Toy, S., Irmak, M. A. & Yilmaz, H. Determination of climatic differences in three different land uses in the city of Erzurum, Turkey. Build. Environ. 42, 1604–1612 (2007).

    Google Scholar 

  • 35.

    Nowak, D. J., Stevens, J. C., Sisinni, S. M. & Luley, C. J. Effects of urban tree management and species selection on atmospheric carbon dioxide. J. Arboric. 28(3), 113–122 (2002).

    Google Scholar 

  • 36.

    Nowak, D. J. et al. A ground-based method of assessing urban forest structure and ecosystem services. Aboricult. Urban For. 34(6), 347–358 (2008).

    Google Scholar 

  • 37.

    Zipperer, W. C., Sisinni, S. M., Pouyat, R. V. & Foresman, T. W. Urban tree cover: An ecological perspective. Urban Ecosyst. 1, 229–246 (1997).

    Google Scholar 

  • 38.

    Oke, T. R. Boundary Layer Climates (Routledge, 1987).

    Google Scholar 

  • 39.

    McCarthy, H. R. & Pataki, D. E. Drivers of variability in water use of native and non-native urban trees in the greater Los Angeles area. Urban Ecosyst. 13, 393–414 (2010).

    Google Scholar 

  • 40.

    MacFarlane, D. W. & Kane, B. Neighbour effects on tree architecture: functional trade-offs balancing crown competitiveness with wind resistance. Funct. Ecol. 31, 1624–1636 (2017).

    Google Scholar 

  • 41.

    Day, S. D., Wiseman, P. E., Dickinson, S. B. & Harris, J. R. Contemporary concepts of root system architecture of urban trees. Arboric. Urban For. 36, 149–159 (2010).

    Google Scholar 

  • 42.

    Harrison, J. L., Blagden, M., Green, M. B., Salvucci, G. D. & Templer, P. H. Water sources for red maple trees in a northern hardwood forest under a changing climate. Ecohydrology 13, e2248 (2020).

    Google Scholar 

  • 43.

    Marchionni, V. et al. Groundwater buffers drought effects and climate variability in urban reserves. Water Resour. Res. 56, e2019WR026192 (2020).

    ADS 

    Google Scholar 

  • 44.

    Chen, L. et al. Biophysical control of whole tree transpiration under an urban environment in Northern China. J. Hydrol. 402, 388–400 (2011).

    ADS 

    Google Scholar 

  • 45.

    Oogathoo, S., Houle, D., Duchesne, L. & Kneeshaw, D. Vapour pressure deficit and solar radiation are the major drivers of transpiration of balsam fir and black spruce tree species in humid boreal regions, even during a short-term drought. Agric. For. Meteorol. 291, 108063 (2020).

    ADS 

    Google Scholar 

  • 46.

    Rodríguez-Gamir, J., Primo-Millo, E. & Forner-Giner, M. Á. An integrated view of whole-tree hydraulic architecture. Does stomatal or hydraulic conductance determine whole tree transpiration?. PLoS ONE 11, e0155246 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 47.

    Rogiers, S. Y., Greer, D. H., Hutton, R. J. & Clarke, S. J. Transpiration efficiency of the grapevine cv. Semillon is tied to VPD in warm climates. Ann. Appl. Biol. 158, 106–114 (2011).

    Google Scholar 

  • 48.

    Tirpak, R. A., Hathaway, J. M. & Franklin, J. A. Evaluating the influence of design strategies and meteorological factors on tree transpiration in bioretention suspended pavement practices. Ecohydrology 11, e2037 (2018).

    Google Scholar 

  • 49.

    Fair, B. A., Metzger, J. D. & Vent, J. Characterization of physical, gaseous, and hydrologic properties of compacted subsoil and its effects on growth and transpiration of two maples grown under greenhouse conditions. Arboric. Urban For. 38, 151–159 (2012).

    Google Scholar 

  • 50.

    Kjelgren, R. K. & Clark, J. R. Growth and water relations of Liquidambar styraciflua L. in an urban park and plaza. Trees 7, 195–201 (1993).

    Google Scholar 

  • 51.

    Larcher, W. Physiological Plant Ecology: Ecophysiology and Stress Physiology of Functional Groups (Springer, 2003).

    Google Scholar 

  • 52.

    Wullschleger, S. D., Wilson, K. B. & Hanson, P. J. Environmental control of whole-plant transpiration, canopy conductance and estimates of the decoupling coefficient for large red maple trees. Agric. For. Meteorol. 104, 157–168 (2000).

    ADS 

    Google Scholar 

  • 53.

    Band, L., Nowak, D., Yang, Y., Endreny, T. & Wang, J. Modeling in the Chesapeake Bay Watershed: effects of trees on stream flow in the Chesapeake Bay. Rep. For. Serv. Agreem. No07­CO‐11242300‐145 (2010).

  • 54.

    Goddard, H. C. Cap and trade for stormwater management. In Economic Incentives for Stormwater Control (ed. Thurston, H.) 211–232 (CRC Press, 2012).

    Google Scholar 

  • 55.

    Blanken, P. D. et al. Energy balance and canopy conductance of a boreal aspen forest: Partitioning overstory and understory components. J. Geophys. Res. Atmos. 102, 28915–28927 (1997).

    ADS 

    Google Scholar 

  • 56.

    Wullschleger, S. D., Hanson, P. J. & Todd, D. E. Transpiration from a multi-species deciduous forest as estimated by xylem sap flow techniques. For. Ecol. Manag. 143, 205–213 (2001).

    Google Scholar 

  • 57.

    USDA Forest Service. Baltimore Cooperating Experimental Forest – Northern Research Station – USDA Forest Service. https://www.nrs.fs.fed.us/ef/locations/md/baltimore/ (2016).

  • 58.

    NOAA. Find a Station | Data Tools | Climate Data Online (CDO) | National Climatic Data Center (NCDC). https://www.ncdc.noaa.gov/cdo-web/datatools/findstation (2007).

  • 59.

    Campbell, G. S. & Norman, J. An Introduction to Environmental Biophysics (Springer, 2012).

    Google Scholar 

  • 60.

    Granier, A. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiol. 3, 309–320 (1987).

    CAS 
    PubMed 

    Google Scholar 

  • 61.

    Lu, P. A direct method for estimating the average sap flux density using a modified Granier measuring system. Funct. Plant Biol. 24, 701–705 (1997).

    Google Scholar 

  • 62.

    Granier, A. Une nouvelle méthode pour la mesure du flux de sève brute dans le tronc des arbres. Ann. Sci. For. 42, 193–200 (1985).

    Google Scholar 

  • 63.

    Oishi, A. C., Hawthorne, D. A. & Oren, R. Baseliner: An open-source, interactive tool for processing sap flux data from thermal dissipation probes. SoftwareX 5, 139–143 (2016).

    ADS 

    Google Scholar 

  • 64.

    Bates, D. M. & Pinheiro, J. C. Linear and nonlinear mixed-effects models. Conf. Appl. Stat. Agric. https://doi.org/10.4148/2475-7772.1273 (1998).

    Article 

    Google Scholar 

  • 65.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).

    Google Scholar 

  • 66.

    Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. Nlme: Linear and nonlinear mixed effects models (R package version 3.1. 140)[Computer software]. (2019).

  • 67.

    Lenth, R. emmeans: Estimated marginal means, aka least-squares means. R package 1(3), 4 (2019).

    Google Scholar 


  • Source: Ecology - nature.com

    At UN climate change conference, trying to “keep 1.5 alive”

    Direct and indirect effects of roads on space use by jaguars in Brazil