Askarizadeh, A. et al. From rain tanks to catchments: Use of low-impact development to address hydrologic symptoms of the urban stream syndrome. Environ. Sci. Technol. 49, 11264–11280 (2015).
Google Scholar
Shuster, W. D., Bonta, J., Thurston, H., Warnemuende, E. & Smith, D. R. Impacts of impervious surface on watershed hydrology: A review. Urban Water J. 2, 263–275 (2005).
Walsh, C. J. et al. The urban stream syndrome: Current knowledge and the search for a cure. J. N. Am. Benthol. Soc. 24, 706–723 (2005).
US EPA. What is Green Infrastructure? US EPA. https://www.epa.gov/green-infrastructure/what-green-infrastructure (2015).
Hoover, F. A. & Hopton, M. E. Developing a framework for stormwater management: Leveraging ancillary benefits from urban greenspace. Urban Ecosyst. 22, 1139–1148 (2019).
Google Scholar
Zölch, T., Henze, L., Keilholz, P. & Pauleit, S. Regulating urban surface runoff through nature-based solutions—An assessment at the micro-scale. Environ. Res. 157, 135–144 (2017).
Google Scholar
Konijnendijk, C. C., Ricard, R. M., Kenney, A. & Randrup, T. B. Defining urban forestry—A comparative perspective of North America and Europe. Urban For. Urban Green. 4, 93–103 (2006).
Berland, A. et al. The role of trees in urban stormwater management. Landsc. Urban Plan. 162, 167–177 (2017).
Google Scholar
Bartens, J., Day, S. D., Harris, J. R., Dove, J. E. & Wynn, T. M. Can urban tree roots improve infiltration through compacted subsoils for stormwater management?. J. Environ. Qual. 37, 2048–2057 (2008).
Google Scholar
Geronimo, F. K. F., Maniquiz-Redillas, M. C., Tobio, J. A. S. & Kim, L. H. Treatment of suspended solids and heavy metals from urban stormwater runoff by a tree box filter. Water Sci. Technol. 69, 2460–2467 (2014).
Google Scholar
Jayasooriya, V. M. & Ng, A. W. M. Tools for modeling of stormwater management and economics of green infrastructure practices: A review. Water Air. Soil Pollut. 225, 2055 (2014).
Google Scholar
Keeley, M. et al. Perspectives on the use of green infrastructure for stormwater management in Cleveland and Milwaukee. Environ. Manag. 51, 1093–1108 (2013).
Google Scholar
Dhakal, K. P. & Chevalier, L. R. Urban stormwater governance: The need for a paradigm shift. Environ. Manag. 57, 1112–1124 (2016).
Google Scholar
Dhakal, K. P. & Chevalier, L. R. Managing urban stormwater for urban sustainability: Barriers and policy solutions for green infrastructure application. J. Environ. Manag. 203, 171–181 (2017).
Tzoulas, K. et al. Promoting ecosystem and human health in urban areas using Green Infrastructure: A literature review. Landsc. Urban Plan. 81, 167–178 (2007).
Kuehler, E., Hathaway, J. & Tirpak, A. Quantifying the benefits of urban forest systems as a component of the green infrastructure stormwater treatment network. Ecohydrology 10, e1813 (2017).
Law, N. L. & Hanson, J. Recommendations of the Expert Panel to Define BMP Effectiveness for Urban Tree Canopy Expansion. Center for Watershed Protection and Chesapeake Stormwater Network. 236. https://owl.cwp.org/mdocs-posts/recommendations-of-the-expert-panel-to-define-bmp-effectiveness-forurban-tree-canopy-expansion/ (Ellicott City, MD, 2016).
Phillips, T. H., Baker, M. E., Lautar, K., Yesilonis, I. & Pavao-Zuckerman, M. A. The capacity of urban forest patches to infiltrate stormwater is influenced by soil physical properties and soil moisture. J. Environ. Manag. 246, 11–18 (2019).
Zipper, S. C., Schatz, J., Kucharik, C. J. & Loheide, S. P. Urban heat island-induced increases in evapotranspirative demand. Geophys. Res. Lett. 44, 873–881 (2017).
Google Scholar
Riikonen, A., Järvi, L. & Nikinmaa, E. Environmental and crown related factors affecting street tree transpiration in Helsinki, Finland. Urban Ecosyst. 19, 1693–1715 (2016).
Asawa, T., Kiyono, T. & Hoyano, A. Continuous measurement of whole-tree water balance for studying urban tree transpiration. Hydrol. Process. 31, 3056–3068 (2017).
Google Scholar
Hagishima, A., Narita, K. & Tanimoto, J. Field experiment on transpiration from isolated urban plants. Hydrol. Process. 21, 1217–1222 (2007).
Google Scholar
Moriwaki, R. & Kanda, M. Seasonal and diurnal fluxes of radiation, heat, water vapor, and carbon dioxide over a suburban area. J. Appl. Meteorol. 1988–2005(43), 1700–1710 (2004).
Spronken-Smith, R. A., Oke, T. R. & Lowry, W. P. Advection and the surface energy balance across an irrigated urban park. Int. J. Climatol. 20, 1033–1047 (2000).
Giraldo, M. A., Jackson, P. & Van-Horne, W. Suburban Forest Change and Vegetation Water Dynamics in Atlanta, USA. Southeast. Geogr. 55, 193–212 (2015).
Peters, E. B., McFadden, J. P. & Montgomery, R. A. Biological and environmental controls on tree transpiration in a suburban landscape. J. Geophys. Res. Biogeosci. https://doi.org/10.1029/2009JG001266 (2010).
Google Scholar
Bhaskar, A. S., Hogan, D. M. & Archfield, S. A. Urban base flow with low impact development. Hydrol. Process. 30, 3156–3171 (2016).
Google Scholar
Peters, E. B., Hiller, R. V. & McFadden, J. P. Seasonal contributions of vegetation types to suburban evapotranspiration. J. Geophys. Res. Biogeosci. https://doi.org/10.1029/2010JG001463 (2011).
Google Scholar
Zhou, W., Wang, J. & Cadenasso, M. L. Effects of the spatial configuration of trees on urban heat mitigation: A comparative study. Remote Sens. Environ. 195, 1–12 (2017).
Google Scholar
McPherson, E. G. Urban forestry: The final frontier?. J. For. 101, 20–25 (2003).
Lefsky, M. A. & McHale, M. R. Volume estimates of trees with complex architecture from terrestrial laser scanning. J. Appl. Remote Sens. 2, 023521 (2008).
Nowak, D.J. Atmospheric carbon dioxide reduction by Chicago’s urban forest. In Chicago’s urban forest ecosystem: Results of the Chicago urban forest climate project.(eds. McPherson, E. G., Nowak, D. J. & Rowntree, R. A.). 83–94 (Gen. Tech. Rep. NE-186. Radnor, PA: U.S. Department of Agriculture, Forest Service, 1994)
Pataki, D. E., McCarthy, H. R., Litvak, E. & Pincetl, S. Transpiration of urban forests in the Los Angeles metropolitan area. Ecol. Appl. 21, 661–677 (2011).
Google Scholar
Yılmaz, S., Toy, S., Irmak, M. A. & Yilmaz, H. Determination of climatic differences in three different land uses in the city of Erzurum, Turkey. Build. Environ. 42, 1604–1612 (2007).
Nowak, D. J., Stevens, J. C., Sisinni, S. M. & Luley, C. J. Effects of urban tree management and species selection on atmospheric carbon dioxide. J. Arboric. 28(3), 113–122 (2002).
Nowak, D. J. et al. A ground-based method of assessing urban forest structure and ecosystem services. Aboricult. Urban For. 34(6), 347–358 (2008).
Zipperer, W. C., Sisinni, S. M., Pouyat, R. V. & Foresman, T. W. Urban tree cover: An ecological perspective. Urban Ecosyst. 1, 229–246 (1997).
Oke, T. R. Boundary Layer Climates (Routledge, 1987).
McCarthy, H. R. & Pataki, D. E. Drivers of variability in water use of native and non-native urban trees in the greater Los Angeles area. Urban Ecosyst. 13, 393–414 (2010).
MacFarlane, D. W. & Kane, B. Neighbour effects on tree architecture: functional trade-offs balancing crown competitiveness with wind resistance. Funct. Ecol. 31, 1624–1636 (2017).
Day, S. D., Wiseman, P. E., Dickinson, S. B. & Harris, J. R. Contemporary concepts of root system architecture of urban trees. Arboric. Urban For. 36, 149–159 (2010).
Harrison, J. L., Blagden, M., Green, M. B., Salvucci, G. D. & Templer, P. H. Water sources for red maple trees in a northern hardwood forest under a changing climate. Ecohydrology 13, e2248 (2020).
Marchionni, V. et al. Groundwater buffers drought effects and climate variability in urban reserves. Water Resour. Res. 56, e2019WR026192 (2020).
Google Scholar
Chen, L. et al. Biophysical control of whole tree transpiration under an urban environment in Northern China. J. Hydrol. 402, 388–400 (2011).
Google Scholar
Oogathoo, S., Houle, D., Duchesne, L. & Kneeshaw, D. Vapour pressure deficit and solar radiation are the major drivers of transpiration of balsam fir and black spruce tree species in humid boreal regions, even during a short-term drought. Agric. For. Meteorol. 291, 108063 (2020).
Google Scholar
Rodríguez-Gamir, J., Primo-Millo, E. & Forner-Giner, M. Á. An integrated view of whole-tree hydraulic architecture. Does stomatal or hydraulic conductance determine whole tree transpiration?. PLoS ONE 11, e0155246 (2016).
Google Scholar
Rogiers, S. Y., Greer, D. H., Hutton, R. J. & Clarke, S. J. Transpiration efficiency of the grapevine cv. Semillon is tied to VPD in warm climates. Ann. Appl. Biol. 158, 106–114 (2011).
Tirpak, R. A., Hathaway, J. M. & Franklin, J. A. Evaluating the influence of design strategies and meteorological factors on tree transpiration in bioretention suspended pavement practices. Ecohydrology 11, e2037 (2018).
Fair, B. A., Metzger, J. D. & Vent, J. Characterization of physical, gaseous, and hydrologic properties of compacted subsoil and its effects on growth and transpiration of two maples grown under greenhouse conditions. Arboric. Urban For. 38, 151–159 (2012).
Kjelgren, R. K. & Clark, J. R. Growth and water relations of Liquidambar styraciflua L. in an urban park and plaza. Trees 7, 195–201 (1993).
Larcher, W. Physiological Plant Ecology: Ecophysiology and Stress Physiology of Functional Groups (Springer, 2003).
Wullschleger, S. D., Wilson, K. B. & Hanson, P. J. Environmental control of whole-plant transpiration, canopy conductance and estimates of the decoupling coefficient for large red maple trees. Agric. For. Meteorol. 104, 157–168 (2000).
Google Scholar
Band, L., Nowak, D., Yang, Y., Endreny, T. & Wang, J. Modeling in the Chesapeake Bay Watershed: effects of trees on stream flow in the Chesapeake Bay. Rep. For. Serv. Agreem. No07CO‐11242300‐145 (2010).
Goddard, H. C. Cap and trade for stormwater management. In Economic Incentives for Stormwater Control (ed. Thurston, H.) 211–232 (CRC Press, 2012).
Blanken, P. D. et al. Energy balance and canopy conductance of a boreal aspen forest: Partitioning overstory and understory components. J. Geophys. Res. Atmos. 102, 28915–28927 (1997).
Google Scholar
Wullschleger, S. D., Hanson, P. J. & Todd, D. E. Transpiration from a multi-species deciduous forest as estimated by xylem sap flow techniques. For. Ecol. Manag. 143, 205–213 (2001).
USDA Forest Service. Baltimore Cooperating Experimental Forest – Northern Research Station – USDA Forest Service. https://www.nrs.fs.fed.us/ef/locations/md/baltimore/ (2016).
NOAA. Find a Station | Data Tools | Climate Data Online (CDO) | National Climatic Data Center (NCDC). https://www.ncdc.noaa.gov/cdo-web/datatools/findstation (2007).
Campbell, G. S. & Norman, J. An Introduction to Environmental Biophysics (Springer, 2012).
Granier, A. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiol. 3, 309–320 (1987).
Google Scholar
Lu, P. A direct method for estimating the average sap flux density using a modified Granier measuring system. Funct. Plant Biol. 24, 701–705 (1997).
Granier, A. Une nouvelle méthode pour la mesure du flux de sève brute dans le tronc des arbres. Ann. Sci. For. 42, 193–200 (1985).
Oishi, A. C., Hawthorne, D. A. & Oren, R. Baseliner: An open-source, interactive tool for processing sap flux data from thermal dissipation probes. SoftwareX 5, 139–143 (2016).
Google Scholar
Bates, D. M. & Pinheiro, J. C. Linear and nonlinear mixed-effects models. Conf. Appl. Stat. Agric. https://doi.org/10.4148/2475-7772.1273 (1998).
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. Nlme: Linear and nonlinear mixed effects models (R package version 3.1. 140)[Computer software]. (2019).
Lenth, R. emmeans: Estimated marginal means, aka least-squares means. R package 1(3), 4 (2019).
Source: Ecology - nature.com