in

Trees outside forests are an underestimated resource in a country with low forest cover

  • 1.

    Turner, W. R., Nakamura, T. & Dinetti, M. Global urbanization and the separation of humans from nature. Bioscience 54, 585–590 (2004).

    Article 

    Google Scholar 

  • 2.

    Schnell, S., Kleinn, C. & Ståhl, G. Monitoring trees outside forests: a review. Environ. Monitor. Assess. 187, 600 (2015).

    Article 

    Google Scholar 

  • 3.

    Ahmed, P. Trees outside forests (TOF): a case study of wood production and consumption in Haryana. Int. For. Rev. 10, 165–172 (2008).

    Google Scholar 

  • 4.

    Krishnankutty, C. N., Thampi, K. B. & Chundamannil, M. Trees outside forests (TOF): a case study of the wood productionconsumption situation in Kerala. Int. For. Rev. 10, 156–164 (2008).

    Google Scholar 

  • 5.

    Smeets, E. M. W. & Faaij, A. P. C. Bioenergy potentials from forestry in 2050: an assessment of the drivers that determine the potentials. Clim. Change 81, 353–390 (2007).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 6.

    Schnell, S., Altrell, D., Ståhl, G. & Kleinn, C. The contribution of trees outside forests to national tree biomass and carbon stocks-a comparative study across three continents. Environ. Monitor. Assess. 187, 4197 (2015).

    Article 

    Google Scholar 

  • 7.

    Zomer, R. J. et al. Trees on farms: an update and reanalysis of agroforestry’s global extent and socio-ecological characteristics. World Agroforestry Center Working Paper 179 (2014).

  • 8.

    Ghosh, M. & Sinha, B. Policy analysis for realizing the potential of timber production from trees outside forests (TOF) in India. Int. For. Rev. 20, 89–103 (2018).

    Google Scholar 

  • 9.

    Pain-Orcet, M. & Bellefontaine, R. Trees outside the forest: a new perspective on the management of forest resources in the tropics. Beyond tropical deforestation: from tropical deforestation to forest cover dynamics and forest development, 423–430 (2004)

  • 10.

    Bellefontaine, R., Petit, S., Pain Orcet, M., Deleporte, P. & Bertault, J.G. Trees outside forests: towards better awareness. Food and Agriculture Organization, 216 (Rome, 2002)

  • 11.

    Kleinn, C. On large-area inventory and assessment of trees outside forests. UNASYLVA-FAO- 3–10 (2000).

  • 12.

    FAO. Global forest resources assessment 2005: Progress towards sustainable forest management. Food and Agriculture Organization of the United Nations (2006).

  • 13.

    Eggleston, S., Buendia, L., Miwa, K., Ngara, T. & Tanabe, K. 2006 IPCC guidelines for national greenhouse gas inventories Vol. 5 (Institute for Global Environmental Strategies Hayama, Japan, 2006).

  • 14.

    FAO. World Urbanization Prospects the Revision 2012 (Technical Report, 2011).

  • 15.

    Tewari, V. P., Sukumar, R., Kumar, R. & Gadow, K. Forest observational studies in India: past developments and considerations for the future. For. Ecol. Manag. 316, 32–46 (2014).

    Article 

    Google Scholar 

  • 16.

    Nath, T. K. & Inoue, M. Impacts of participatory forestry on livelihoods of ethnic people: experience from Bangladesh. Soc. Nat. Resour. 23, 1093–1107 (2010).

    Article 

    Google Scholar 

  • 17.

    Islam, S.S. Stratified Two-Stage Sampling (Self-Weighted) for assessment of village forest resources. J. Trop. For. Sci., 9–16 (2004)

  • 18.

    Zashimuddin, M. Community forestry for poverty reduction in Bangladesh. For. Poverty Reduct. Commun. For. Make Money, 81–94 (2004).

  • 19.

    FAO. Global Forest Resources Assessment 2015. Technical Report, Rome (2015).

  • 20.

    Muhammed, N., Koike, M. & Haque, F. Forest policy and sustainable forest management in Bangladesh: an analysis from national and international perspectives. New For. 36, 201–216 (2008).

    Article 

    Google Scholar 

  • 21.

    Manning, A. D., Fischer, J. & Lindenmayer, D. B. Scattered trees are keystone structures-implications for conservation. Biol. Conserv. 132, 311–321 (2006).

    Article 

    Google Scholar 

  • 22.

    Potapov, P. et al. Comprehensive monitoring of Bangladesh tree cover inside and outside of forests, 2000–2014. Environ. Res. Lett. 12, 104015 (2017).

    Article 
    ADS 

    Google Scholar 

  • 23.

    Schumacher, J. & Nord-Larsen, T. Wall-to-wall tree type classification using airborne lidar data and CIR images. Int. J. Remote Sens. 35, 3057–3073 (2014).

    Article 
    ADS 

    Google Scholar 

  • 24.

    Ouma, Y. O. & Tateishi, R. Urban-trees extraction from Quickbird imagery using multiscale spectex-filtering and non-parametric classification. ISPRS J. Photogramm. Remote Sens. 63, 333–351 (2008).

    Article 
    ADS 

    Google Scholar 

  • 25.

    Levin, N. et al. Mapping forest patches and scattered trees from SPOT images and testing their ecological importance for woodland birds in a fragmented agricultural landscape. Int. J. Remote Sens. 30, 3147–3169 (2009).

    Article 
    ADS 

    Google Scholar 

  • 26.

    Sandberg, G., Ulander, L. M. H., Wallerman, J. & Fransson, J. E. S. Measurements of forest biomass change using P-band synthetic aperture radar backscatter. IEEE Trans. Geosci. Remote Sens. 52, 6047–6061 (2014).

    Article 
    ADS 

    Google Scholar 

  • 27.

    Mitchard, E. T. A. et al. Mapping tropical forest biomass with radar and spaceborne LiDAR in Lopé National Park, Gabon: overcoming problems of high biomass and persistent cloud. Biogeosciences 9, 179–191 (2012).

    Article 
    ADS 

    Google Scholar 

  • 28.

    Minh, D. H. T. et al. Relating P-band synthetic aperture radar tomography to tropical forest biomass. IEEE Trans. Geosci. Remote Sens. 52, 967–979 (2013).

    Article 

    Google Scholar 

  • 29.

    Stovall, A. E. L., Shugart, H. & Yang, X. Tree height explains mortality risk during an intense drought. Nat. Commun. 10, 1–6 (2019).

    Article 

    Google Scholar 

  • 30.

    Swatantran, A., Tang, H., Barrett, T., DeCola, P. & Dubayah, R. Rapid, high-resolution forest structure and terrain mapping over large areas using single photon lidar. Sci. Rep. 6, 28277 (2016).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 31.

    Stovall, A. E. L. & Shugart, H. H. Improved biomass calibration and validation with terrestrial LiDAR: implications for future LiDAR and SAR missions. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 11, 3527–3537 (2018).

    Article 
    ADS 

    Google Scholar 

  • 32.

    Hansen, M.C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 33.

    Martone, M. et al. The global forest/non-forest map from TanDEM-X interferometric SAR data. Remote Sens. Environ. 205, 352–373 (2018).

    Article 
    ADS 

    Google Scholar 

  • 34.

    Lang, N., Schindler, K. & Wegner, J. D. Country-wide high-resolution vegetation height mapping with Sentinel-2. Remote Sens. Environ. 233, 111347 (2019).

    Article 
    ADS 

    Google Scholar 

  • 35.

    UNFAO. The State of World fisheries and Aquaculture 2014, vol. 24 (2014).

  • 36.

    Reddy, C. S., Pasha, S. V., Jha, C. S., Diwakar, P. G. & Dadhwal, V. K. Development of national database on long-term deforestation (1930–2014) in Bangladesh. Glob. Planet. Change 139, 173–182 (2016).

    Article 
    ADS 

    Google Scholar 

  • 37.

    Long, A. J. & Nair, P. K. R. Trees outside forests: agro-, community, and urban forestry. In Planted Forests: Contributions to the Quest for Sustainable Societies, 145–174 (Springer, 1999).

  • 38.

    Muhammed, N., Masum, M. F. H., Hossain, M. M., Chakma, S. & Oesten, G. Economic dependence of rural people on homestead forestry in Mymensingh, Bangladesh. J. For. Res. 24, 591–597 (2013).

    Article 

    Google Scholar 

  • 39.

    Motiur, R. M., Furukawa, Y., Kawata, I., Rahman, M. M. & Alam, M. Role of homestead forests in household economy and factors affecting forest production: a case study in southwest Bangladesh. J. For. Res. 11, 89–97 (2006).

    Article 

    Google Scholar 

  • 40.

    Salam, M. A., Noguchi, T. & Koike, M. Understanding why farmers plant trees in the homestead agroforestry in Bangladesh. Agrofor. Syst. 50, 77–93 (2000).

    Article 

    Google Scholar 

  • 41.

    Rossi, J.-P. & Rousselet, J. The spatial distribution of trees outside forests in a large open-field region and its potential impact on habitat connectivity for forest insects. Türkiye Ormancılık Dergisi 17, 62–64 (2016).

    Article 

    Google Scholar 

  • 42.

    Kabir, M. E. & Webb, E. L. Can homegardens conserve biodiversity in Bangladesh?. Biotropica 40, 95–103 (2008).

    Google Scholar 

  • 43.

    Gibbons, P. et al. The future of scattered trees in agricultural landscapes. Conserv. Biol. 22, 1309–1319 (2008).

    CAS 
    Article 

    Google Scholar 

  • 44.

    World Bank. No Title (2018).

  • 45.

    Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on eartha new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51, 933–938 (2001).

    Article 

    Google Scholar 

  • 46.

    Shimada, M. et al. New global forest/non-forest maps from ALOS PALSAR data (2007–2010). Remote Sens. Environ. 155, 13–31. https://doi.org/10.1016/j.rse.2014.04.014 (2014).

    Article 
    ADS 

    Google Scholar 

  • 47.

    GDAL/OGR contributors (2019). GDAL/OGR Geospatial Data Abstraction software Library. Open Source Geospatial Foundation. https://gdal.org.

  • 48.

    Montesano, P. M., Sun, G., Dubayah, R. & Ranson, K. J. The uncertainty of plot-scale forest height estimates from complementary spaceborne observations in the taiga-tundra ecotone. Remote Sens. 6, 10070–10088 (2014).

    Article 
    ADS 

    Google Scholar 

  • 49.

    Montesano, P. M., Sun, G., Dubayah, R. O. & Ranson, K. J. Spaceborne potential for examining taiga-tundra ecotone form and vulnerability. Biogeosciences 13, 3847–3861 (2016).

    Article 
    ADS 

    Google Scholar 

  • 50.

    Montesano, P. M. et al. The use of sun elevation angle for stereogrammetric boreal forest height in open canopies. Remote Sens. Environ. 196, 76–88 (2017).

    Article 
    ADS 

    Google Scholar 

  • 51.

    Olofsson, P. et al. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 148, 42–57 (2014).

    Article 
    ADS 

    Google Scholar 


  • Source: Ecology - nature.com

    Corrosion and transformation of solution combustion synthesized Co, Ni and CoNi nanoparticles in synthetic freshwater with and without natural organic matter

    On species delimitation, hybridization and population structure of cassava whitefly in Africa