in

Triacontanol modulates salt stress tolerance in cucumber by altering the physiological and biochemical status of plant cells

  • 1.

    Fahmi, A. I., Nagaty, H. H., Eissa, R. A. & Hassan, M. M. Effects of salt stress on some nitrogen fixation parameters in faba bean. Pak. J. Biol. Sci. 14, 385–391 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 2.

    Munns, R. & Tester, M. Mechanism of salinity tolerance. Annu. Rev. Plant Biol. 59, 651–681 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 3.

    Chinnusamy, V., Jagendorf, A. & Zhu, J. Understanding and improving salt tolerance in plants. Crop Sci. 45, 437–448 (2005).

    CAS 

    Google Scholar 

  • 4.

    Chaum, S., Pokasombat, Y. & Kirdmanee, C. Remediation of salt-affected soil by gypsum and farm yard manure—Importance for the production of Jasmine rice. Austr. J. Crop Sci. 5(4), 458–465 (2011).

    Google Scholar 

  • 5.

    Sarwar, M., Amjad, M. & Ayyub, C. M. Alleviation of salt stress in cucumber (Cucumis sativus L.) through seed priming with triacontanol. Int. J. Agric. Biol. 19, 771–778 (2017).

    CAS 

    Google Scholar 

  • 6.

    Afzal, I., Basra, S. M. A., Ahmad, N. & Farooq, M. Optimization of hormonal priming techniques for alleviation of salinity stress in wheat (Triticum aestivum L.). Caderno de Pesquisa Série Biologia 17(1), 95–109 (2005).

    Google Scholar 

  • 7.

    Javid, M. G., Sorooshzadeh, A., Moradi, F., Sanavy Seyed, A. M. M. & Allahdadi, I. The role of phytohormones in alleviating salt stress in crop plants. AJCS 5(6), 726–734 (2011).

    CAS 

    Google Scholar 

  • 8.

    Ahmad, P. et al. Calcium and potassium supplementation enhanced growth, osmolyte secondary metabolite production, and enzymatic antioxidant machinery in cadmium-exposed chickpea (Cicer arietinum L.). Front. Plant Sci. 7, 513 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 9.

    Mittova, V., Guy, M., Tal, M. & Volokita, M. Salinity up-regulates the antioxidative system in root mitochondria and peroxisomes of the wild salt-tolerant tomato species Lycopersicon pennellii. J. Exp. Bot. 55(399), 1105–1113 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • 10.

    Liu, P. et al. Enhanced root hydraulic conductance by aquaporin regulation accounts for silicon alleviated salt-induced osmotic stress in Sorghum bicolor L. Environ. Exp. Bot. 111, 42–51 (2015).

    CAS 

    Google Scholar 

  • 11.

    Kumaravelu, G., Livingstone, M. D. & Ramanujam, M. P. Triacontanol- induced changes in the growth, photosynthetic pigments, cell metabolites, flowering and yield of green gram. Biol. Plant 43, 287–290 (2000).

    CAS 

    Google Scholar 

  • 12.

    Khan, M. M. A. et al. Triacontanol-induced changes in the growth, yield and quality of tomato (Lycopersicon esculentum Mill). Electron. J. Environ. Agric. Food Chem. 5, 1492–1499 (2006).

    CAS 

    Google Scholar 

  • 13.

    Ries, S. K., Wert, V. F., Sweeley, C. C. & Leavitt, R. A. Triacontanol: A new naturally occurring plant growth regulator. Science 195, 1339–1341 (1977).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 14.

    Muthuchelian, K., Murugan, C., Harigovindan, R., Nedunchezhian, N. & Kulandaivelu, G. Ameliorating effect of triacontanol on salt stressed Erythrina variegate seedlings. Changes in growth, biomass, pigments and solute accumulation. Biol. Plant 38, 133–136 (1996).

    CAS 

    Google Scholar 

  • 15.

    Verma, A., Malik, C. P., Gupta, V. K. & Bajaj, B. K. Effects of in vitro triacontanol on growth, antioxidant enzymes, and photosynthetic characteristics in Arachis hypogaea hypogea L. Braz. J. Plant Physiol. 23, 271–277 (2011).

    CAS 

    Google Scholar 

  • 16.

    Kilic, N. K., Duygu, E. & Donmez, G. Triacontanol hormone stimulates population, growth and Brilliant Blue R dye removal by common duckweed from culture media. J. Hazard. Mater. 182, 525–530 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 17.

    Naeem, M., Khan, M. M. A., Moinuddin, M., Idrees, K. & Aftab, T. Triacontanol-mediated regulation of growth and other physiological attributes active constituents and yield of Mentha arvensis L. Plant Growth Regul. 11, 9588–9598 (2011).

    Google Scholar 

  • 18.

    Chen, X. et al. Isolation and characterization of triacontanol regulated genes in rice (Oryza sativa L.): Possible role of triacontanol as plant growth stimulator. Plant Cell Physiol. 43(8), 869–876 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • 19.

    Chen, X., Yuan, H., Chen, R., Zhu, L. & He, G. Biochemical and photochemical changes in response to triacontanol in rice (Oryza sativa L.). Plant Growth Regul. 40, 249–256 (2003).

    CAS 

    Google Scholar 

  • 20.

    Reddy, B. O., Giridhar, P. & Ravishankar, G. A. The effect of triacontanol on micropropagation of Capsicum frutescens and Decalepis hamiltonii W&A. Plant Cell Tissue Organ Cult. 71, 253–258 (2002).

    Google Scholar 

  • 21.

    Tantos, A., Meszaros, A., Farkas, T., Szalai, J. & Horvath, G. Triacontanol supported the micropropagation of woody plants. Plant Cell Rep. 20, 16–21 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 22.

    Cavusoglu, K., Kilic, S. & Kabar, K. Effects of triacontanol pretreatment on seed germination, seedling growth and leaf anatomy under saline (NaCl) conditions. Sdu. Fen. Edebiyat Fakultesi Fen Dergisi (E-Dergi) 2(2), 136–145 (2007).

    Google Scholar 

  • 23.

    Noreen, Z. & Ashraf, M. Assessment of variation in antioxidative defense system in salt- treated pea (Pisum sativum) cultivars and its putative use as salinity tolerance markers. J. Plant Physiol. 166, 1764–1774 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • 24.

    FAO. The State of the World’s Land and Water Resources for Food and Agriculture (SOLAW) Managing Systems at Risk (Food and Agriculture Organization of the United Nations, 2012).

    Google Scholar 

  • 25.

    Yamaguchi, T. & Blumwald, E. Developing salt-tolerant crop plants: Challenges and opportunities. Trends Plant Sci. 10(12), 616–619 (2005).

    Google Scholar 

  • 26.

    Stepien, P. & Klobus, G. Water relations and photosynthesis in Cucumis sativus L. leaves under salt stress. Biol. Plant 50, 610–616 (2006).

    CAS 

    Google Scholar 

  • 27.

    Ayers, R. S. & Westcot, D. W. Water quality for agriculture FAO irrigation and drainage. UN Rome 29, 1 (1985).

    Google Scholar 

  • 28.

    Dorota, Z. Irrigating with High Salinity Water Bulletin 322 Agricultural and Biological Engineering Dep (Florida Cooperative Extension service Institute of Food and Agriculture Sciences University of Florida, 1997).

    Google Scholar 

  • 29.

    Wang, X. J. Analysis of secondary salination in protected soils. North. Hortic. 3(4), 12–13 (1998).

    Google Scholar 

  • 30.

    Haghighi, M. & Pessarakli, M. Influence of silicon and nano-silicon on salinity tolerance of cherry tomatoes (Solanum lycopersicum L.) at early growth stage. Sci. Hortic. 161, 111–117 (2013).

    CAS 

    Google Scholar 

  • 31.

    Sarwar, M. et al. Evaluation of cucumber germplasm for salinity tolerance based on early growth attributes and leaf inorganic osmolytes. Transylv. Rev. 24(11), 1077–1086 (2016).

    Google Scholar 

  • 32.

    Zekri, M. Effects of NaCl on growth and physiology of sour orange and Cleopatra mandarin seedlings. Sci. Hortic. 47, 305–315 (1991).

    CAS 

    Google Scholar 

  • 33.

    Moya, J. L., Gomez-Cademas, A., Primo-Millo, E. & Talon, M. Chloride absorption in salt-sensitive Carrizo citrange and salt tolerant Cleapatra mandarian citrus rootstocks is linked to water use. J. Experi. Bot. 54, 825–833 (2003).

    CAS 

    Google Scholar 

  • 34.

    Giannopolitis, C. N. & Ries, S. K. Superoxide dismutase I. Occurrence in higher plants. Plant Physiol. 59, 309–314 (1977).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 35.

    Chance, B. & Maehly, A. C. Assay of catalase and peroxidase. Methods Enzymol. 2, 764–775 (1955).

    Google Scholar 

  • 36.

    Khan, W., Prithiviraj, B. & Smith, P. Photosynthetic responses of corn and soybean to foliar application of salicylates. J. Plant Physiol. 160(5), 485–492 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • 37.

    Lutts, S., Kinet, J. M. & Bouharmont, J. NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann. Bot. 78, 389–398 (1996).

    CAS 

    Google Scholar 

  • 38.

    Bates, L. S., Waldron, R. P. & Teaxe, I. W. Rapid determination of free proline for water stress studies. Plant Soil. 39, 205–207 (1972).

    Google Scholar 

  • 39.

    Grieve, C. M. & Gratan, S. R. Rapid assay for the determination of water soluble quaternary ammonium compounds. Plant Soil. 70, 303–307 (1983).

    CAS 

    Google Scholar 

  • 40.

    Julkenen-Titto, R. Phenolic constituents in the leaves of northern willows: Methods for the analysis of certain phenolics. Agric. Food Chem. 33(2), 213–217 (1985).

    Google Scholar 

  • 41.

    Wheatherly, P. E. & Barrs, C. A reexamination of the relative turgidity technique for estimating water deficits in leaves. Aust. J. Biol. Sci. 15, 413–428 (1962).

    Google Scholar 

  • 42.

    Dadzie, B. K. & Orchard, J. E. Routine Postharvest Screening of Banana/Plantain Hybrids: Criteria and Methods. INIBAP Technical Guidelines 2 9–11 (International Plant Genetic Resources Institute, 1997).

    Google Scholar 

  • 43.

    Delfine, S., Alvino, A., Villani, M. C. & Loreto, F. Restrictions to carbon dioxide conductance and photosynthesis in spinach leave recovering from salt stress. Plant Physiol. 119, 101–106 (1999).

    Google Scholar 

  • 44.

    Chen, S. F., Zhu, Y. L., Liu, Y. L., Hu, C. M. & Zhang, G. W. Effects of NaCl stress on ABA and polyamine contents in leaves of grafted tomato seedlings. Acta Hortic. Sin. 33(1), 58–62 (2006).

    Google Scholar 

  • 45.

    Eriksen, A. B., Haugstad, M. K. & Nilsen, S. Yield of tomato and maize in response to foliar and root applications of triacontanol. Plant Growth Regul. 1, 11–14 (1982).

    CAS 

    Google Scholar 

  • 46.

    Misra, A. & Srivastava, N. K. Effects of the triacontanol formulations ‘“Miraculan”’ on photosynthesis, growth, nutrient uptake, and essential oil yield of lemongrass (Cymbopogon flexuosus) Steud, Watts. Plant Growth Regul. 10, 57–63 (1991).

    CAS 

    Google Scholar 

  • 47.

    Ivanov, A. G. & Angelov, M. N. Photosynthesis response to triacontanol correlates with increased dynamics of mesophyll protoplast and chloroplast membranes. Plant Growth Regul. 21, 145–152 (1997).

    CAS 

    Google Scholar 

  • 48.

    Shakirova, F. M., Sakhabutdinova, A. R., Bezrukova, M. V., Fatkhutdinova, R. A. & Fatkhutdinova, D. R. Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Sci. 164, 317–322 (2003).

    CAS 

    Google Scholar 

  • 49.

    Aziz, R., Shahbaz, M. & Ashraf, M. Influence of foliar application of triacontanol on growth attributes, gas exchange and chlorophyll fluorescence in sunflower (Helianthus annuus L.) under saline stress. Pak. J. Bot. 45(6), 1913–1918 (2013).

    CAS 

    Google Scholar 

  • 50.

    Shao, H. B. et al. Phenol by Synechocystis sp. in media including triacontanol hormone. Water Environ. J. 26, 1747–6585 (2006).

    Google Scholar 

  • 51.

    Moghaieb, R. E. A., Saneoka, H. & Fujita, K. Effect of salinity on osmotic adjustment, glycinebetaine accumulation and betaine aldehyde dehydrogenase gene expression in two halophytic plants, Salicornia europaea and Suaeda maritime. Plant Sci. 166(5), 1345–1349 (2004).

    CAS 

    Google Scholar 

  • 52.

    Munns, R. Gene and salt tolerance: Bringing them together. New Phytol. 167(3), 645–663 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 53.

    Gucci, R., Lombardini, L. & Tattini, M. Analysis of leaf water relations in two olive (Olea europaea L.) cultivars differing in tolerance to salinity. Tree Physiol. 17, 13–21 (1997).

    CAS 
    PubMed 

    Google Scholar 

  • 54.

    Khandaker, M. M., Faruq, G., Motior, R. M., Sofian-Azirun, M. & Nasrulhaq, B. A. The influence of 1-triacontanol on the growth, flowering, and quality of potted bougainvillea plants (Bougainvillea glabra var. ‘‘Elizabeth Angus’’) under natural conditions. Sci. World J. 10, 1–12 (2013).

    Google Scholar 

  • 55.

    Gatica, A. M., Arrieta, G. & Espinosa, A. M. Direct somatic embryogenesis in Coffea arabica L cvs catura and catuai: Effect of triacontanol, light condition, and medium consistence. Agron. Costarric. 32(1), 139–147 (2008).

    Google Scholar 

  • 56.

    Naeem, M., Khan, M. M. A., Moinuddin, M. & Siddiqui, M. H. Triacontanol stimulates nitrogen-fixation, enzyme activities, photosynthesis, crop productivity and quality of hyacinth bean (Lablab purpureus L.). Sci. Hortic. 121, 389–396 (2009).

    CAS 

    Google Scholar 

  • 57.

    Zhu, J. K. Overexpression of a delta-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water and salt stress in transgenic rice. Trends Plant Sci. 6, 66–72 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 58.

    Dos-Reis, S. P., Lima, A. M. & De-Souza, C. R. B. Recent molecular advances on down stream plant responses to abiotic stress. Int. J. Mol. Sci. 13(7), 8628–8647 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 59.

    Shahbaz, M., Ashraf, M., Al-Qurainy, F. & Harris, P. J. C. Salt tolerance in selected vegetable crops. Crit. Rev. Plant Sci. 31, 303–320 (2012).

    CAS 

    Google Scholar 

  • 60.

    Mahboob, W. et al. Seed priming improves the performance of late sown spring maiz (Zea mays) through better crop stand and physiological attributes. Int. J. Agric. Biol. 17(3), 491–498 (2015).

    CAS 

    Google Scholar 

  • 61.

    Sarwar, M. et al. Improving the salt stress tolerance in cucumber (Cucumis sativus L.) using by triacontanol. J. Hortic. Sci. Technol. 2(1), 20–26 (2019).

    Google Scholar 

  • 62.

    Ertani, A., Schiavon, M., Muscolo, A. & Nardi, S. Alfalfa plant derived bio stimulant stimulate short-term growth of salt stressed Zea mays L. plants. Plant Soil 364, 145–158 (2012).

    Google Scholar 

  • 63.

    Miniraj, N. & Shanmugavelu, K. G. Studies on the effect of triacontanol on growth, flowering, yield, quality and nutrient uptake in chillies. South Indian Hortic. 35, 362–366 (1987).

    Google Scholar 

  • 64.

    Aftab, T. et al. Stimulation of crop productivity, photosynthesis and artemisinin production in Artemisia annua L. by triacontanol and gibberellic acid application. J. Plant Interact. 4, 273–481 (2010).

    Google Scholar 

  • 65.

    Borowski, E. & Blamowski, Z. K. The effect of triacontanol ‘TRIA’ and Asahi-SL on the development and metabolic activity of sweet basil (Ocimum basilicum L.) plants treated with chilling. Folia Hortic. 21(1), 39–48 (2009).

    Google Scholar 

  • 66.

    Chaudhary, B. R., Sharma, M. D., Shakya, S. M. & Gautam, D. M. Effect of plant growth regulators on growth, yield and quality of chilli (Capsicum annum L.) at Rampur Chitwan. J. Inst. Agric. Anim. Sci. 27, 65–68 (2006).

    Google Scholar 

  • 67.

    Ashraf, M., Akram, N. A., Arteca, R. N. & Foolad, M. R. The physiological, biochemical and molecular roles of brassinosteroids and salicylic acid in plant processes and salt tolerance. Crit. Rev. Plant Sci. 29(3), 162–190 (2010).

    CAS 

    Google Scholar 

  • 68.

    Hangarter, R., Ries, S. K. & Carlson, P. Effect of triacontanol on plant cell cultures in vitro. Plant Physiol. 61, 855–857 (1978).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 69.

    Kapitsimadi, C. & Vioryl, S. A. Effect of a long chain aliphatic alcohol (triacontanol) on growth and yield of different horticultural crops. Acta Hortic. 379, 237–243 (1995).

    CAS 

    Google Scholar 

  • 70.

    Muthuchelian, K., Velayutham, M. & Nedunchezhian, N. Ameliorating effect of triacontanol on acidic mist-treated Erythrina variegata seedlings. Changes in growth and photosynthetic activities. Plant Sci. 165, 1253–1257 (2003).

    CAS 

    Google Scholar 

  • 71.

    Khan, N., Nazar, R. & Anjum, N. Growth, photosynthesis and antioxidant metabolism in mustard (Brassica juncea L.) cultivars differing in ATP-sulfurylase activity under salinity stress. Sci. Hortic. 122, 455–460 (2009).

    CAS 

    Google Scholar 


  • Source: Ecology - nature.com

    Assessing the influence of the amount of reachable habitat on genetic structure using landscape and genetic graphs

    Biodiversity and ecosystem functions depend on environmental conditions and resources rather than the geodiversity of a tropical biodiversity hotspot