Fahmi, A. I., Nagaty, H. H., Eissa, R. A. & Hassan, M. M. Effects of salt stress on some nitrogen fixation parameters in faba bean. Pak. J. Biol. Sci. 14, 385–391 (2011).
Google Scholar
Munns, R. & Tester, M. Mechanism of salinity tolerance. Annu. Rev. Plant Biol. 59, 651–681 (2008).
Google Scholar
Chinnusamy, V., Jagendorf, A. & Zhu, J. Understanding and improving salt tolerance in plants. Crop Sci. 45, 437–448 (2005).
Google Scholar
Chaum, S., Pokasombat, Y. & Kirdmanee, C. Remediation of salt-affected soil by gypsum and farm yard manure—Importance for the production of Jasmine rice. Austr. J. Crop Sci. 5(4), 458–465 (2011).
Sarwar, M., Amjad, M. & Ayyub, C. M. Alleviation of salt stress in cucumber (Cucumis sativus L.) through seed priming with triacontanol. Int. J. Agric. Biol. 19, 771–778 (2017).
Google Scholar
Afzal, I., Basra, S. M. A., Ahmad, N. & Farooq, M. Optimization of hormonal priming techniques for alleviation of salinity stress in wheat (Triticum aestivum L.). Caderno de Pesquisa Série Biologia 17(1), 95–109 (2005).
Javid, M. G., Sorooshzadeh, A., Moradi, F., Sanavy Seyed, A. M. M. & Allahdadi, I. The role of phytohormones in alleviating salt stress in crop plants. AJCS 5(6), 726–734 (2011).
Google Scholar
Ahmad, P. et al. Calcium and potassium supplementation enhanced growth, osmolyte secondary metabolite production, and enzymatic antioxidant machinery in cadmium-exposed chickpea (Cicer arietinum L.). Front. Plant Sci. 7, 513 (2016).
Google Scholar
Mittova, V., Guy, M., Tal, M. & Volokita, M. Salinity up-regulates the antioxidative system in root mitochondria and peroxisomes of the wild salt-tolerant tomato species Lycopersicon pennellii. J. Exp. Bot. 55(399), 1105–1113 (2004).
Google Scholar
Liu, P. et al. Enhanced root hydraulic conductance by aquaporin regulation accounts for silicon alleviated salt-induced osmotic stress in Sorghum bicolor L. Environ. Exp. Bot. 111, 42–51 (2015).
Google Scholar
Kumaravelu, G., Livingstone, M. D. & Ramanujam, M. P. Triacontanol- induced changes in the growth, photosynthetic pigments, cell metabolites, flowering and yield of green gram. Biol. Plant 43, 287–290 (2000).
Google Scholar
Khan, M. M. A. et al. Triacontanol-induced changes in the growth, yield and quality of tomato (Lycopersicon esculentum Mill). Electron. J. Environ. Agric. Food Chem. 5, 1492–1499 (2006).
Google Scholar
Ries, S. K., Wert, V. F., Sweeley, C. C. & Leavitt, R. A. Triacontanol: A new naturally occurring plant growth regulator. Science 195, 1339–1341 (1977).
Google Scholar
Muthuchelian, K., Murugan, C., Harigovindan, R., Nedunchezhian, N. & Kulandaivelu, G. Ameliorating effect of triacontanol on salt stressed Erythrina variegate seedlings. Changes in growth, biomass, pigments and solute accumulation. Biol. Plant 38, 133–136 (1996).
Google Scholar
Verma, A., Malik, C. P., Gupta, V. K. & Bajaj, B. K. Effects of in vitro triacontanol on growth, antioxidant enzymes, and photosynthetic characteristics in Arachis hypogaea hypogea L. Braz. J. Plant Physiol. 23, 271–277 (2011).
Google Scholar
Kilic, N. K., Duygu, E. & Donmez, G. Triacontanol hormone stimulates population, growth and Brilliant Blue R dye removal by common duckweed from culture media. J. Hazard. Mater. 182, 525–530 (2010).
Google Scholar
Naeem, M., Khan, M. M. A., Moinuddin, M., Idrees, K. & Aftab, T. Triacontanol-mediated regulation of growth and other physiological attributes active constituents and yield of Mentha arvensis L. Plant Growth Regul. 11, 9588–9598 (2011).
Chen, X. et al. Isolation and characterization of triacontanol regulated genes in rice (Oryza sativa L.): Possible role of triacontanol as plant growth stimulator. Plant Cell Physiol. 43(8), 869–876 (2002).
Google Scholar
Chen, X., Yuan, H., Chen, R., Zhu, L. & He, G. Biochemical and photochemical changes in response to triacontanol in rice (Oryza sativa L.). Plant Growth Regul. 40, 249–256 (2003).
Google Scholar
Reddy, B. O., Giridhar, P. & Ravishankar, G. A. The effect of triacontanol on micropropagation of Capsicum frutescens and Decalepis hamiltonii W&A. Plant Cell Tissue Organ Cult. 71, 253–258 (2002).
Tantos, A., Meszaros, A., Farkas, T., Szalai, J. & Horvath, G. Triacontanol supported the micropropagation of woody plants. Plant Cell Rep. 20, 16–21 (2001).
Google Scholar
Cavusoglu, K., Kilic, S. & Kabar, K. Effects of triacontanol pretreatment on seed germination, seedling growth and leaf anatomy under saline (NaCl) conditions. Sdu. Fen. Edebiyat Fakultesi Fen Dergisi (E-Dergi) 2(2), 136–145 (2007).
Noreen, Z. & Ashraf, M. Assessment of variation in antioxidative defense system in salt- treated pea (Pisum sativum) cultivars and its putative use as salinity tolerance markers. J. Plant Physiol. 166, 1764–1774 (2009).
Google Scholar
FAO. The State of the World’s Land and Water Resources for Food and Agriculture (SOLAW) Managing Systems at Risk (Food and Agriculture Organization of the United Nations, 2012).
Yamaguchi, T. & Blumwald, E. Developing salt-tolerant crop plants: Challenges and opportunities. Trends Plant Sci. 10(12), 616–619 (2005).
Stepien, P. & Klobus, G. Water relations and photosynthesis in Cucumis sativus L. leaves under salt stress. Biol. Plant 50, 610–616 (2006).
Google Scholar
Ayers, R. S. & Westcot, D. W. Water quality for agriculture FAO irrigation and drainage. UN Rome 29, 1 (1985).
Dorota, Z. Irrigating with High Salinity Water Bulletin 322 Agricultural and Biological Engineering Dep (Florida Cooperative Extension service Institute of Food and Agriculture Sciences University of Florida, 1997).
Wang, X. J. Analysis of secondary salination in protected soils. North. Hortic. 3(4), 12–13 (1998).
Haghighi, M. & Pessarakli, M. Influence of silicon and nano-silicon on salinity tolerance of cherry tomatoes (Solanum lycopersicum L.) at early growth stage. Sci. Hortic. 161, 111–117 (2013).
Google Scholar
Sarwar, M. et al. Evaluation of cucumber germplasm for salinity tolerance based on early growth attributes and leaf inorganic osmolytes. Transylv. Rev. 24(11), 1077–1086 (2016).
Zekri, M. Effects of NaCl on growth and physiology of sour orange and Cleopatra mandarin seedlings. Sci. Hortic. 47, 305–315 (1991).
Google Scholar
Moya, J. L., Gomez-Cademas, A., Primo-Millo, E. & Talon, M. Chloride absorption in salt-sensitive Carrizo citrange and salt tolerant Cleapatra mandarian citrus rootstocks is linked to water use. J. Experi. Bot. 54, 825–833 (2003).
Google Scholar
Giannopolitis, C. N. & Ries, S. K. Superoxide dismutase I. Occurrence in higher plants. Plant Physiol. 59, 309–314 (1977).
Google Scholar
Chance, B. & Maehly, A. C. Assay of catalase and peroxidase. Methods Enzymol. 2, 764–775 (1955).
Khan, W., Prithiviraj, B. & Smith, P. Photosynthetic responses of corn and soybean to foliar application of salicylates. J. Plant Physiol. 160(5), 485–492 (2003).
Google Scholar
Lutts, S., Kinet, J. M. & Bouharmont, J. NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann. Bot. 78, 389–398 (1996).
Google Scholar
Bates, L. S., Waldron, R. P. & Teaxe, I. W. Rapid determination of free proline for water stress studies. Plant Soil. 39, 205–207 (1972).
Grieve, C. M. & Gratan, S. R. Rapid assay for the determination of water soluble quaternary ammonium compounds. Plant Soil. 70, 303–307 (1983).
Google Scholar
Julkenen-Titto, R. Phenolic constituents in the leaves of northern willows: Methods for the analysis of certain phenolics. Agric. Food Chem. 33(2), 213–217 (1985).
Wheatherly, P. E. & Barrs, C. A reexamination of the relative turgidity technique for estimating water deficits in leaves. Aust. J. Biol. Sci. 15, 413–428 (1962).
Dadzie, B. K. & Orchard, J. E. Routine Postharvest Screening of Banana/Plantain Hybrids: Criteria and Methods. INIBAP Technical Guidelines 2 9–11 (International Plant Genetic Resources Institute, 1997).
Delfine, S., Alvino, A., Villani, M. C. & Loreto, F. Restrictions to carbon dioxide conductance and photosynthesis in spinach leave recovering from salt stress. Plant Physiol. 119, 101–106 (1999).
Chen, S. F., Zhu, Y. L., Liu, Y. L., Hu, C. M. & Zhang, G. W. Effects of NaCl stress on ABA and polyamine contents in leaves of grafted tomato seedlings. Acta Hortic. Sin. 33(1), 58–62 (2006).
Eriksen, A. B., Haugstad, M. K. & Nilsen, S. Yield of tomato and maize in response to foliar and root applications of triacontanol. Plant Growth Regul. 1, 11–14 (1982).
Google Scholar
Misra, A. & Srivastava, N. K. Effects of the triacontanol formulations ‘“Miraculan”’ on photosynthesis, growth, nutrient uptake, and essential oil yield of lemongrass (Cymbopogon flexuosus) Steud, Watts. Plant Growth Regul. 10, 57–63 (1991).
Google Scholar
Ivanov, A. G. & Angelov, M. N. Photosynthesis response to triacontanol correlates with increased dynamics of mesophyll protoplast and chloroplast membranes. Plant Growth Regul. 21, 145–152 (1997).
Google Scholar
Shakirova, F. M., Sakhabutdinova, A. R., Bezrukova, M. V., Fatkhutdinova, R. A. & Fatkhutdinova, D. R. Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Sci. 164, 317–322 (2003).
Google Scholar
Aziz, R., Shahbaz, M. & Ashraf, M. Influence of foliar application of triacontanol on growth attributes, gas exchange and chlorophyll fluorescence in sunflower (Helianthus annuus L.) under saline stress. Pak. J. Bot. 45(6), 1913–1918 (2013).
Google Scholar
Shao, H. B. et al. Phenol by Synechocystis sp. in media including triacontanol hormone. Water Environ. J. 26, 1747–6585 (2006).
Moghaieb, R. E. A., Saneoka, H. & Fujita, K. Effect of salinity on osmotic adjustment, glycinebetaine accumulation and betaine aldehyde dehydrogenase gene expression in two halophytic plants, Salicornia europaea and Suaeda maritime. Plant Sci. 166(5), 1345–1349 (2004).
Google Scholar
Munns, R. Gene and salt tolerance: Bringing them together. New Phytol. 167(3), 645–663 (2005).
Google Scholar
Gucci, R., Lombardini, L. & Tattini, M. Analysis of leaf water relations in two olive (Olea europaea L.) cultivars differing in tolerance to salinity. Tree Physiol. 17, 13–21 (1997).
Google Scholar
Khandaker, M. M., Faruq, G., Motior, R. M., Sofian-Azirun, M. & Nasrulhaq, B. A. The influence of 1-triacontanol on the growth, flowering, and quality of potted bougainvillea plants (Bougainvillea glabra var. ‘‘Elizabeth Angus’’) under natural conditions. Sci. World J. 10, 1–12 (2013).
Gatica, A. M., Arrieta, G. & Espinosa, A. M. Direct somatic embryogenesis in Coffea arabica L cvs catura and catuai: Effect of triacontanol, light condition, and medium consistence. Agron. Costarric. 32(1), 139–147 (2008).
Naeem, M., Khan, M. M. A., Moinuddin, M. & Siddiqui, M. H. Triacontanol stimulates nitrogen-fixation, enzyme activities, photosynthesis, crop productivity and quality of hyacinth bean (Lablab purpureus L.). Sci. Hortic. 121, 389–396 (2009).
Google Scholar
Zhu, J. K. Overexpression of a delta-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water and salt stress in transgenic rice. Trends Plant Sci. 6, 66–72 (2001).
Google Scholar
Dos-Reis, S. P., Lima, A. M. & De-Souza, C. R. B. Recent molecular advances on down stream plant responses to abiotic stress. Int. J. Mol. Sci. 13(7), 8628–8647 (2012).
Google Scholar
Shahbaz, M., Ashraf, M., Al-Qurainy, F. & Harris, P. J. C. Salt tolerance in selected vegetable crops. Crit. Rev. Plant Sci. 31, 303–320 (2012).
Google Scholar
Mahboob, W. et al. Seed priming improves the performance of late sown spring maiz (Zea mays) through better crop stand and physiological attributes. Int. J. Agric. Biol. 17(3), 491–498 (2015).
Google Scholar
Sarwar, M. et al. Improving the salt stress tolerance in cucumber (Cucumis sativus L.) using by triacontanol. J. Hortic. Sci. Technol. 2(1), 20–26 (2019).
Ertani, A., Schiavon, M., Muscolo, A. & Nardi, S. Alfalfa plant derived bio stimulant stimulate short-term growth of salt stressed Zea mays L. plants. Plant Soil 364, 145–158 (2012).
Miniraj, N. & Shanmugavelu, K. G. Studies on the effect of triacontanol on growth, flowering, yield, quality and nutrient uptake in chillies. South Indian Hortic. 35, 362–366 (1987).
Aftab, T. et al. Stimulation of crop productivity, photosynthesis and artemisinin production in Artemisia annua L. by triacontanol and gibberellic acid application. J. Plant Interact. 4, 273–481 (2010).
Borowski, E. & Blamowski, Z. K. The effect of triacontanol ‘TRIA’ and Asahi-SL on the development and metabolic activity of sweet basil (Ocimum basilicum L.) plants treated with chilling. Folia Hortic. 21(1), 39–48 (2009).
Chaudhary, B. R., Sharma, M. D., Shakya, S. M. & Gautam, D. M. Effect of plant growth regulators on growth, yield and quality of chilli (Capsicum annum L.) at Rampur Chitwan. J. Inst. Agric. Anim. Sci. 27, 65–68 (2006).
Ashraf, M., Akram, N. A., Arteca, R. N. & Foolad, M. R. The physiological, biochemical and molecular roles of brassinosteroids and salicylic acid in plant processes and salt tolerance. Crit. Rev. Plant Sci. 29(3), 162–190 (2010).
Google Scholar
Hangarter, R., Ries, S. K. & Carlson, P. Effect of triacontanol on plant cell cultures in vitro. Plant Physiol. 61, 855–857 (1978).
Google Scholar
Kapitsimadi, C. & Vioryl, S. A. Effect of a long chain aliphatic alcohol (triacontanol) on growth and yield of different horticultural crops. Acta Hortic. 379, 237–243 (1995).
Google Scholar
Muthuchelian, K., Velayutham, M. & Nedunchezhian, N. Ameliorating effect of triacontanol on acidic mist-treated Erythrina variegata seedlings. Changes in growth and photosynthetic activities. Plant Sci. 165, 1253–1257 (2003).
Google Scholar
Khan, N., Nazar, R. & Anjum, N. Growth, photosynthesis and antioxidant metabolism in mustard (Brassica juncea L.) cultivars differing in ATP-sulfurylase activity under salinity stress. Sci. Hortic. 122, 455–460 (2009).
Google Scholar
Source: Ecology - nature.com