in

Trophic niches of native and nonnative fishes along a river-reservoir continuum

[adace-ad id="91168"]
  • 1.

    Dudgeon, D. et al. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol. Rev. 81, 163–182. https://doi.org/10.1017/S1464793105006950 (2006).

    Article 
    PubMed 

    Google Scholar 

  • 2.

    Strayer, D. L. & Dudgeon, D. Freshwater biodiversity conservation: recent progress and future challenges. J. N. Am. Benthol. Soc. 29, 344–359. https://doi.org/10.1899/08-171.1 (2010).

    Article 

    Google Scholar 

  • 3.

    Reid, A. J. et al. Emerging threats and persistent challenges for freshwater biodiversity. Biol. Rev. 94, 849–873. https://doi.org/10.1111/brv.12480 (2019).

    Article 
    PubMed 

    Google Scholar 

  • 4.

    Cucherousset, J. & Olden, J. D. Ecological impacts of nonnative freshwater fishes. Fisheries 36, 215–230. https://doi.org/10.1080/03632415.2011.574578 (2011).

    Article 

    Google Scholar 

  • 5.

    Vander Zanden, M. J., Casselman, J. M. & Rasmussen, J. B. Stable isotope evidence for the food web consequences of species invasions in lakes. Nature 401, 464–467. https://doi.org/10.1038/46762 (1999).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 6.

    Britton, J. R., Davies, G. D. & Harrod, C. Trophic interactions and consequent impacts of the invasive fish Psuedorasbora parva in a native aquatic food web: a field investigation in the UK. Biol. Invasions 12, 1533–1542. https://doi.org/10.1007/s10530-009-9566-5 (2010).

    Article 

    Google Scholar 

  • 7.

    Cox, J. G. & Lima, S. L. Naiveté and an aquatic-terrestrial dichotomy in the effects of introduced predators. Trends Ecol. Evol. 21, 674–680. https://doi.org/10.1016/j.tree.2006.07.011 (2006).

    Article 
    PubMed 

    Google Scholar 

  • 8.

    Marks, J. C., Haden, G. A., O’Neil, M. & Pace, C. Effects of flow restoration and exotic species removal on recovery of native fish: Lessons from a dam decommissioning. Restor. Ecol. 18, 934–943. https://doi.org/10.1111/j.1526-100X.2009.00574.x (2010).

    Article 

    Google Scholar 

  • 9.

    Walsworth, T. E., Budy, P. & Thiede, G. P. Longer food chains and crowded niche space: effects of multiple invaders on desert stream food web structure. Ecol. Freshw. Fish 22, 439–452. https://doi.org/10.1111/eff.12038 (2013).

    Article 

    Google Scholar 

  • 10.

    Rogosch, J. S. & Olden, J. D. Invaders induce coordinated isotopic niche shifts in native fish species. Can. J. Fish. Aquat. Sci. 77, 1348–1358. https://doi.org/10.1139/cjfas-2019-0346 (2020).

    Article 

    Google Scholar 

  • 11.

    Connell, J. H. The influence of interspecific competition and other factors on the distribution of the barnacle Chthamalus stellatus. Ecology 42, 710–723. https://doi.org/10.2307/1933500 (1961).

    Article 

    Google Scholar 

  • 12.

    Zaret, T. M. & Rand, A. S. Competition in tropical stream fishes: Support for the competitive exclusion principle. Ecology 52, 336–342. https://doi.org/10.2307/1934593 (1971).

    Article 

    Google Scholar 

  • 13.

    Britton, J. R., Ruiz-Navarro, A., Verreycken, H. & Amat-Trigo, F. Trophic consequences of introduced species: comparative impacts of increased interspecific versus intraspecific competitive interactions. Funct. Ecol. 32, 486–495. https://doi.org/10.1111/1365-2435.12978 (2018).

    Article 
    PubMed 

    Google Scholar 

  • 14.

    Connell, J. H. On the prevalence and relative importance of interspecific competition: evidence from field experiments. Am. Nat. 122, 661–696. https://doi.org/10.1086/284165 (1983).

    Article 

    Google Scholar 

  • 15.

    David, P. et al. Impacts of invasive species on food webs: a review of empirical data. Adv. Ecol. Res. 56, 1–60. https://doi.org/10.1016/bs.aecr.2016.10.001 (2017).

    Article 

    Google Scholar 

  • 16.

    Vannote, R. L., Wayne Minshall, G., Cummins, K. W., Sedell, J. R. & Cushing, C. E. The river continuum concept. Can. J. Fish. Aquat. Sci. 37, 130–137. https://doi.org/10.1139/f80-017 (1980).

    Article 

    Google Scholar 

  • 17.

    Ibañez, C. et al. Convergence of temperate and tropical stream fish assemblages. Ecography 32, 658–670. https://doi.org/10.1111/j.1600-0587.2008.05591.x (2009).

    Article 

    Google Scholar 

  • 18.

    Winemiller, K. O. et al. Stable isotope analysis reveals food web structure and watershed impacts along the fluvial gradient of a Mesoamerican coastal river. River Res. Appl. 27, 791–803. https://doi.org/10.1002/rra.1396 (2011).

    Article 

    Google Scholar 

  • 19.

    Ward, J. V. & Stanford, J. A. The serial discontinuity concept: extending the model to floodplain rivers. River Res. Appl. 10, 159–168. https://doi.org/10.1002/rrr.3450100211 (1983).

    Article 

    Google Scholar 

  • 20.

    Sabo, J. L. et al. Pulsed flows, tributary inputs and food-web structure in a highly regulated river. J. Appl. Ecol. 55, 1884–1895. https://doi.org/10.1111/1365-2664.13109 (2018).

    Article 

    Google Scholar 

  • 21.

    Sabater, S. Alterations of the global water cycle and their effects on river structure, function and services. Freshw. Rev. 1, 75–89. https://doi.org/10.1608/FRH-1.1.5 (2008).

    Article 

    Google Scholar 

  • 22.

    Arrantes, C. C., Fitzgerald, D. B., Hoeinghaus, D. J. & Winemiller, K. O. Impacts of hydroelectric dams on fishes and fisheries in tropical rivers through the lens of functional traits. Curr. Opin. Environ. Sustain. 37, 28–40. https://doi.org/10.1016/j.cosust.2019.04.009 (2019).

    Article 

    Google Scholar 

  • 23.

    Cross, W. F. et al. Ecosystem ecology meets adaptive management: food web response to a controlled flood on the Colorado River, Glen Canyon. Ecol. Appl. 21, 2016–2033. https://doi.org/10.1890/10-1719.1 (2011).

    Article 
    PubMed 

    Google Scholar 

  • 24.

    Cross, W. F. et al. Food web dynamics in a large river discontinuum. Ecol. Monogr. 83, 311–337. https://doi.org/10.1890/12-1727.1 (2013).

    Article 

    Google Scholar 

  • 25.

    Wellard Kelley, H. A. et al. Macroinvertebrate diets reflect tributary inputs and turbidity-driven changes in food availability in the Colorado River downstream of Glen Canyon Dam. Freshw. Sci. 32, 397–410. https://doi.org/10.1899/12-088.1 (2013).

    Article 

    Google Scholar 

  • 26.

    Thornton, K. W., Kimmel, B. L. & Payne, F. E. Reservoir Limnology: Ecological Perspectives (John Wiley and Sons, 1990).

    Google Scholar 

  • 27.

    Havel, J. E., Lee, C. E. & Vander Zanden, J. M. Do reservoirs facilitate invasions into landscapes?. Bioscience 55, 518–525. https://doi.org/10.1641/0006-3568(2005)055[0518:DRFIIL]2.0.CO;2 (2005).

    Article 

    Google Scholar 

  • 28.

    Southwood, T. R. E. Habitat, the templet for ecological strategies?. J. Anim. Ecol. 46, 337–365. https://doi.org/10.2307/3817 (1977).

    Article 

    Google Scholar 

  • 29.

    Brook, B. W., Sodhi, N. S. & Bradshaw, C. J. A. Synergies among extinction drivers under global change. Trends Ecol. Evol. 23, 453–460. https://doi.org/10.1016/j.tree.2008.03.011 (2008).

    Article 
    PubMed 

    Google Scholar 

  • 30.

    Mercado-Silva, N., Helmus, M. R. & Vander Zanden, M. J. The effects of impoundment and non-native species on a river food web in Mexico’s central plateau. River Res. Appl. 25, 1090–1108. https://doi.org/10.1002/rra.1205 (2009).

    Article 

    Google Scholar 

  • 31.

    Villéger, S., Blanchet, S., Beauchard, O., Oberdorff, T. & Brosse, S. Homogenization patterns of the world’s freshwater fish faunas. Proc. Natl. Acad. Sci. U. S. A. 108, 18003–18008. https://doi.org/10.1073/pnas.1107614108 (2011).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Delong, M. D., Thorp, J. H., Thoms, M. C. & McIntosh, L. M. Trophic niche dimensions of fish communities as a function of historical hydrological conditions in a Plains river. River Syst. 19, 177–187. https://doi.org/10.1127/1868-5749/2011/019-0036 (2011).

    Article 

    Google Scholar 

  • 33.

    Pilger, T. J., Gido, K. B. & Propst, D. L. Diet and trophic niche overlap of native and nonnative fishes in the Gila River, USA: implications for native fish conservation. Ecol. Freshw. Fish 19, 300–321. https://doi.org/10.1111/j.1600-0633.2010.00415.x (2010).

    Article 

    Google Scholar 

  • 34.

    Mor, J. R. et al. Dam regulation and riverine food-web structure in a Mediterranean river. Sci. Total Environ. 625, 301–310. https://doi.org/10.1016/j.scitotenv.2017.12.296 (2018).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 35.

    Tyus, H. M. & Saunders, J. F. III. Nonnative fish control and endangered fish recovery: lessons from the Colorado River. Fisheries 25, 17–24. https://doi.org/10.1577/1548-8446(2000)025%3c0017:NFCAEF%3e2.0.CO;2 (2000).

    Article 

    Google Scholar 

  • 36.

    Strayer, D. L. Alien species in fresh waters: ecological effects, interactions with other stressors, and prospects for the future. Freshw. Biol. 55, 152–174. https://doi.org/10.1111/j.1365-2427.2009.02380.x (2010).

    Article 

    Google Scholar 

  • 37.

    Marks, J. C., Williamson, C. & Hendrickson, D. A. Coupling stable isotope studies with food web manipulations to predict the effects of exotic fish: lessons from Cuatro Ciénegas, Mexico. Aquat. Conserv. 21, 317–323. https://doi.org/10.1002/aqc.1199 (2011).

    Article 

    Google Scholar 

  • 38.

    Cooke, S. J., Paukert, C. & Hogan, Z. Endangered river fish: factors hindering conservation and restoration. Endanger. Species Res. 17, 179–191. https://doi.org/10.3354/esr00426 (2012).

    Article 

    Google Scholar 

  • 39.

    Pennock, C. A., Farrington, M. A. & Gido, K. B. Feeding ecology of early life stage Razorback Sucker relative to other sucker species in the San Juan River. Trans. Am. Fish. Soc. 148, 938–951. https://doi.org/10.1002/tafs.10188 (2019).

    Article 

    Google Scholar 

  • 40.

    Cucherousset, J., Bouletreau, S., Martino, A., Roussel, J. M. & Santoul, F. Using stable isotope analyses to determine the ecological effects of non-native fishes. Fish. Mgmt. Ecol. 19, 111–119. https://doi.org/10.1111/j.1365-2400.2011.00824.x (2012).

    Article 

    Google Scholar 

  • 41.

    Finlay, J. C. Stable-carbon-isotope ratios of river biota: Implications for energy flow in lotic food webs. Ecology 82, 1052–1064. https://doi.org/10.1890/0012-9658(2001)082[1052:SCIROR]2.0.CO;2 (2001).

    Article 

    Google Scholar 

  • 42.

    France, R. L. Differentiation between littoral and pelagic food webs in lakes using stable carbon isotopes. Limnol. Oceanogr. 40, 1310–1313. https://doi.org/10.4319/lo.1995.40.7.1310 (1995).

    ADS 
    Article 

    Google Scholar 

  • 43.

    Fry, B. Stable Isotope Ecology (Springer-Verlag, 2006).

    Book 

    Google Scholar 

  • 44.

    Vander Zanden, M. J., Cabana, G. & Rasmussen, J. B. Comparing trophic position of freshwater fish calculated using stable nitrogen isotope ratios (δ15N) and literature dietary data. Can. J. Fish. Aquat. Sci. 54, 1142–1158. https://doi.org/10.1139/f97-016 (1997).

    Article 

    Google Scholar 

  • 45.

    Post, D. M. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology 83, 703–718. https://doi.org/10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2 (2002).

    Article 

    Google Scholar 

  • 46.

    Layman, C. A., Arrington, D. A., Montaña, C. G. & Post, D. M. Can stable isotope ratios provide for community-wide measures of trophic structure?. Ecology 88, 42–48. https://doi.org/10.1890/0012-9658(2007)88[42:CSIRPF]2.0.CO;2 (2007).

    Article 
    PubMed 

    Google Scholar 

  • 47.

    Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER: stable Isotope Bayesian Ellipses in R. J. Anim. Ecol. 80, 595–602. https://doi.org/10.1111/j.1365-2656.2011.01806.x (2011).

    Article 
    PubMed 

    Google Scholar 

  • 48.

    Swanson, H. K. et al. A new probabilistic method for quantifying n-dimensional ecological niches and niche overlap. Ecology 96, 318–324. https://doi.org/10.1890/14-0235.1 (2015).

    Article 
    PubMed 

    Google Scholar 

  • 49.

    Minckley, W. L. & Deacon, J. E. Battle Against Extinction: Native Fish Management in the American West (The University of Arizona Press, 1991).

    Google Scholar 

  • 50.

    Albrecht, B. A. et al. Use of inflow areas in two Colorado River basin reservoirs by the endangered Razorback Sucker (Xyrauchen texanus). West. N. Am. Nat. 77, 500–514. https://doi.org/10.3398/064.077.0410 (2018).

    Article 

    Google Scholar 

  • 51.

    Pennock, C. A. et al. Reservoir fish assemblage structure across an aquatic ecotone: Can river-reservoir interfaces provide conservation and management opportunities?. Fish. Manag. Ecol. 28, 1–13. https://doi.org/10.1111/fme.12444 (2021).

    Article 

    Google Scholar 

  • 52.

    Gido, K. B. & Propst, D. L. Habitat use and association of native and nonnative fishes in the San Juan River, New Mexico and Utah. Copeia 1999, 321–332. https://doi.org/10.2307/1447478 (1999).

    Article 

    Google Scholar 

  • 53.

    Gido, K. B., Franssen, N. R. & Propst, D. L. Spatial variation in δ15N and δ13C isotopes in the San Juan River, New Mexico and Utah: implications for the conservation of native fishes. Environ. Biol. Fish. 75, 197–207. https://doi.org/10.1007/s10641-006-0009-1 (2006).

    Article 

    Google Scholar 

  • 54.

    Ryden, D. W. & Ahlm, L. A. Observations on the distribution and movements of Colorado Squawfish, Ptychocheilus lucius, in the San Juan River, New Mexico, Colorado, and Utah. Southwest. Nat. 41, 161–168 (1996).

    Google Scholar 

  • 55.

    Cathcart, C. N. et al. Waterfall formation at a desert river-reservoir delta isolates endangered fishes. River Res. Appl. 34, 948–956. https://doi.org/10.1002/rra.3341 (2018).

    Article 

    Google Scholar 

  • 56.

    Thomsen, M. S. et al. Impacts of marine invaders on biodiversity depend on trophic position and functional similarity. Mar. Ecol. Prog. Ser. 495, 39–47. https://doi.org/10.3354/meps10566 (2014).

    ADS 
    Article 

    Google Scholar 

  • 57.

    McIntyre, P. B. & Flecker, A. S. Rapid turnover of tissue nitrogen of primary consumers in tropical freshwaters. Oecologia 148, 12–21. https://doi.org/10.1007/s00442-005-0354-3 (2006).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • 58.

    Franssen, N. R., Gilbert, E. I., James, A. P. & Davis, J. E. Isotopic tissue turnover and discrimination factors following a laboratory diet switch in Colorado Pikeminnow (Ptychocheilus lucius). Can. J. Fish. Aq. Sci. 74, 265–272. https://doi.org/10.1139/cjfas-2015-0531 (2017).

    CAS 
    Article 

    Google Scholar 

  • 59.

    Busst, G. M. A. & Britton, J. R. Tissue-specific turnover rates of the nitrogen stable isotope as functions of time and growth in a cyprinid fish. Hydrobiologia 805, 49–60. https://doi.org/10.1007/s10750-017-3276-2 (2018).

    CAS 
    Article 

    Google Scholar 

  • 60.

    Arrington, D. A. & Winemiller, K. O. Preservation effects on stable isotope analysis of fish muscle. Trans. Am. Fish. Soc. 131, 337–342. https://doi.org/10.1577/1548-8659(2002)131%3c0337:PEOSIA%3e2.0.CO;2 (2002).

    CAS 
    Article 

    Google Scholar 

  • 61.

    Hubert, W. A., Pope, K. L. & Dettmers, J. M. Passive capture techniques. In Fisheries Techniques 3rd edn (eds Zale, A. V. et al.) 223–265 (American Fisheries Society, 2012).

    Google Scholar 

  • 62.

    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).

    Article 

    Google Scholar 

  • 63.

    Fox, J., & Weisberg, S. An {R} Companion to Applied Regression, 2nd edn. (Sage 2011). http://socserv.socci.mcmaster.ca/jfox/Books/Companion

  • 64.

    Lefcheck, S. piecewiseSEM: Piecewise structural equation modeling in R for ecology, evolution, and systematics. Methods Ecol. Evo. 7, 573–579. https://doi.org/10.1111/2041-210X.12512 (2016).

    Article 

    Google Scholar 

  • 65.

    Nakagawa, S., Johnson, P. C. D. & Schielzeth, H. The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J. R. Soc. Interface 14, 20170213. https://doi.org/10.1098/rsif.2017.0213 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 66.

    Lysy, M., Stasko, A. D., Swanson, H. K. nicheROVER: (Niche) (R)egion and Niche (Over)lap metrics for multidimensional ecological niches. R package version 1.0 (2014). https://CRAN.R-project.org/package=nicheROVER

  • 67.

    R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna (2019). Available: https://www.R-project.org/

  • 68.

    Franssen, N. R., Davis, J. E., Ryden, D. W. & Gido, K. B. Fish community responses to mechanical removal of nonnative fishes in a large southwestern river. Fisheries 8, 352–363. https://doi.org/10.1080/03632415.2014.924409 (2014).

    Article 

    Google Scholar 

  • 69.

    Kelly, D. J. & Jellyman, D. J. Changes in trophic linkages to shortfin eels (Anguilla australis) since the collapse of submerged macrophytes in Lake Ellesmere, New Zealand. Hydrobiologia 579, 161–173. https://doi.org/10.1007/s10750-006-0400-0 (2007).

    Article 

    Google Scholar 

  • 70.

    Zambrano, L., Valiente, E. & Vander Zanden, M. J. food web overlap among native axolotl (Ambystoma mexicanum) and two exotic fishes: carp (Cyprinus carpio) and tilapia (Oreochromis niloticus) in Xochimilco, Mexico City. Biol. Invasions 12, 3061–3069. https://doi.org/10.1007/s10530-010-9697-8 (2010).

    Article 

    Google Scholar 

  • 71.

    Córdova-Tapia, F., Contreras, M. & Zambrano, L. Trophic niche overlap between native and non-native fishes. Hydrobiologia 746, 291–301. https://doi.org/10.1007/s10750-014-1944-z (2015).

    Article 

    Google Scholar 

  • 72.

    Portz, D. E. & Tyus, H. M. Fish humps in two Colorado River fishes: a morphological response to cyprinid predation?. Environ. Biol. Fishes 71, 233–245. https://doi.org/10.1007/s10641-004-0300-y (2004).

    Article 

    Google Scholar 

  • 73.

    Pennock, C. A. et al. Predicted and observed responses of a nonnative Channel Catfish population following managed removal to aid the recovery of endangered fishes. N. Am. J. Fish. Mgmt. 38, 565–578. https://doi.org/10.1002/nafm.10056 (2018).

    Article 

    Google Scholar 

  • 74.

    Hedden, S. C. et al. Quantifying consumption of native fishes by nonnative Channel Catfish in a desert river. N. Am. J. Fish. Manag. https://doi.org/10.1002/nafm.10514 (2020).

    Article 

    Google Scholar 

  • 75.

    Nogueira, M. G., Oliveira, P. C. R. & Britto, Y. T. Zooplankton assemblages (Copepoda and Cladocera) in a cascade of reservoirs of a large tropical river (SE Brazil). Limnetica 27, 151–170 (2008).

    Google Scholar 

  • 76.

    Slaveska-Stamenković, V. et al. Factors affecting distribution pattern of dominant macroinvertebrates in Mantovo Reservoir (Republic of Macedonia). Biologia 67, 1129–1142. https://doi.org/10.2478/s11756-012-0102-1 (2012).

    Article 

    Google Scholar 

  • 77.

    Behn, K. E. & Baxter, C. V. The trophic ecology of a desert river fish assemblage: influence of season and hydrologic variability. Ecosphere 10, e02583. https://doi.org/10.1002/ecs2.2583 (2019).

    Article 

    Google Scholar 

  • 78.

    Glenn, E. P., Lee, C., Felger, R. & Zengel, S. Effects of water management on the wetlands of the Colorado River Delta, Mexico. Conserv. Biol. 10, 1175–1186. https://doi.org/10.1046/j.1523-1739.1996.10041175.x (1996).

    Article 

    Google Scholar 

  • 79.

    Sykes, G. The Colorado River Delta. Publication no. 460. (Carnegie Institution of Washington, D.C. 1937).

  • 80.

    Dalrymple, G. B. & Hamblin, W. K. K-Ar of Pleistocene lava dams in the Grand Canyon in Arizona. Proc. Natl. Acad. Sci. U.S.A. 95, 9744–9749. https://doi.org/10.1073/pnas.95.17.9744 (1998).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 81.

    Minckley, W. L. Status of the razorback sucker, Xyrauchen texanus (Abbott), in the Lower Colorado River Basin. Southwest. Nat. 28, 165–187. https://doi.org/10.2307/3671385 (1983).

    Article 

    Google Scholar 

  • 82.

    Doi, H. Spatial patterns of autochthonous and allochthonous resources in aquatic food webs. Popul. Ecol. 51, 57–64. https://doi.org/10.1007/s10144-008-0127-z (2009).

    Article 

    Google Scholar 

  • 83.

    Thorp, J. H. & Delong, M. D. Dominance of autochthonous autotrophic carbon in food webs of heterotrophic rivers. Oikos 96, 543–550. https://doi.org/10.1034/j.1600-0706.2002.960315.x (2002).

    Article 

    Google Scholar 

  • 84.

    Rennie, M. D., Sprules, W. G. & Johnson, T. B. Resource switching in fish following a major food web disruption. Oecologia 159, 789–802. https://doi.org/10.1007/s00442-008-1271-z (2009).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • 85.

    Cummings, B. M. & Schindler, D. E. Depth variation in isotopic composition of benthic resources and assessment of sculpin feeding patterns in an oligotrophic Alaskan lake. Aquat. Ecol. 47, 403–414. https://doi.org/10.1007/s10452-013-9453-0 (2013).

    CAS 
    Article 

    Google Scholar 

  • 86.

    Fera, S. A., Rennie, M. D. & Dunlop, E. S. Broad shifts in the resource use of a commercially harvested fish following the invasion of dreissenid mussels. Ecology 98, 1681–1692. https://doi.org/10.1002/ecy.1836 (2017).

    Article 
    PubMed 

    Google Scholar 

  • 87.

    Pennock, C. A., McKinstry, M. C. & Gido, K. B. Razorback Sucker movement strategies across a river-reservoir habitat complex. Trans. Am. Fish. Soc. 149, 620–634. https://doi.org/10.1002/tafs.10262 (2020).

    Article 

    Google Scholar 

  • 88.

    Vatland, S. & Budy, P. Predicting the invasion success of an introduced omnivore in a large heterogeneous reservoir. Can. J. Fish. Aquat. Sci. 64, 1329–1345. https://doi.org/10.1139/f07-100 (2007).

    Article 

    Google Scholar 

  • 89.

    Romanuk, T. N., Hayward, A. & Hutchings, J. A. Trophic level scales positively with body size in fishes. Glob. Ecol. Biogeogr. 20, 231–240. https://doi.org/10.1111/j.1466-8238.2010.00579.x (2011).

    Article 

    Google Scholar 

  • 90.

    Franssen, N. R., Gilbert, E. I., Gido, K. B. & Propst, D. L. Hatchery-reared endangered Colorado pikeminnow (Ptychocheilus lucius) undergo a gradual transition to piscivory after introduction to the wild. Aquat. Conserv. 29, 24–38. https://doi.org/10.1002/aqc.2995 (2019).

    Article 

    Google Scholar 

  • 91.

    Hoeinghaus, D. J., Winemiller, K. O. & Agostinho, A. A. Hydrogeomorphology and river impoundment affect food-chain length of divers Neotropical food webs. Oikos 117, 984–995. https://doi.org/10.1111/j.2008.0030-1299.16458.x (2008).

    Article 

    Google Scholar 

  • 92.

    Grill, G. et al. Mapping the world’s free-flowing rivers. Nature 569, 215–221. https://doi.org/10.1038/s41586-019-1111-9 (2019).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 93.

    Pennock, C. A. & Gido, K. B. Spatial and temporal dynamics of fish assemblages in a desert reservoir over 38 years. Hyrdobiologia 848, 1231–1248. https://doi.org/10.1007/s10750-021-04514-z (2021).

    Article 

    Google Scholar 

  • 94.

    Oliveira, E. F., Minte-Vera, C. V. & Goulart, E. Structure of fish assemblages along spatial gradients in a deep subtropical reservoir (Itaipu Reservoir, Brazil-Paraguay border). Environ. Biol. Fish. 72, 283–304. https://doi.org/10.1007/s10641-004-2582-5 (2005).

    Article 

    Google Scholar 

  • 95.

    Buckmeier, D. L., Smith, N. G., Fleming, B. P. & Bodine, K. A. Intra-annual variation in river-reservoir interface fish assemblages: implications for fish conservation and management in regulated rivers. River Res. Appl. 30, 780–790. https://doi.org/10.1002/rra.2667 (2014).

    Article 

    Google Scholar 

  • 96.

    Albrecht, B. A., Holden, P. B., Kegerries, R. B. & Golden, M. E. Razorback sucker recruitment in Lake Mead, Nevada-Arizona, why here?. Lake Reserv. Manage. 26, 336–344. https://doi.org/10.1080/07438141.2010.511966 (2010).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    MIT J-WAFS awards eight grants in seventh round of seed funding

    Non-uniform tropical forest responses to the ‘Columbian Exchange’ in the Neotropics and Asia-Pacific