Barbier, E. B. et al. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81, 169–193. https://doi.org/10.1890/10-1510.1 (2011).
Google Scholar
Costanza, R. et al. Changes in the global value of ecosystem services. Glob. Environ. Chang. 26, 152–158. https://doi.org/10.1016/j.gloenvcha.2014.04.002 (2014).
Google Scholar
Lovelock, C. E. & Duarte, C. M. Dimensions of blue carbon and emerging perspectives. Biol. Lett. 15. https://doi.org/10.1098/rsbl.2018.0781 (2019).
Emanuel, K. Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436, 686–688. https://doi.org/10.1038/nature03906 (2005).
Google Scholar
Lovelock, C. E. & Reef, R. Variable impacts of climate change on blue carbon. One Earth 3, 195–211. https://doi.org/10.1016/j.oneear.2020.07.010 (2020).
Google Scholar
Knutson, T. R. et al. Tropical cyclones and climate change. Nat. Geosci. 3, 157 (2010).
Google Scholar
Alongi, D. M. Carbon cycling in the world’s mangrove ecosystems revisited: Significance of non-steady state diagenesis and subsurface linkages between the forest floor and the coastal ocean. Forests 11, 1–17. https://doi.org/10.3390/f11090977 (2020).
Google Scholar
Donato, D. C. et al. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci. 4, 293–297. https://doi.org/10.1038/ngeo1123 (2011).
Google Scholar
Alongi, D. M. Global significance of mangrove blue carbon in climate change mitigation. Science 2, 67 (2020).
Google Scholar
Taillardat, P., Friess, D. A. & Lupascu, M. Mangrove blue carbon strategies for climate change mitigation are most effective at the national scale. Biol. Lett. 14. https://doi.org/10.1098/rsbl.2018.0251 (2018).
Rivera-Monroy, V. H. et al. in Mangrove Ecosystems: A Global Biogeographic Perspective: Structure, Function, and Services (eds. Rivera-Monroy, V.H., Lee, S.Y., Kristensen, E. & Twilley, R.R.) 347–381 (Springer, 2017).
Yao, Q., Liu, K.-B., Platt, W. J. & Rivera-Monroy, V. H. Palynological reconstruction of environmental changes in coastal wetlands of the Florida Everglades since the mid-Holocene. Quatern. Res. 83, 449–458. https://doi.org/10.1016/j.yqres.2015.03.005 (2015).
Google Scholar
Twilley, R. R., Rivera-Monroy, V. H., Rovai, A. S., Castañeda-Moya, E. & Davis, S. in Coastal Wetlands (eds. Perillo, G. M. E., Wolanski, E., Cahoon, D. R. & Hopkinson, C. S.) 717–785 (Elsevier, 2019).
Woodroffe, C., Robertson, A. & Alongi, D. Mangrove sediments and geomorphology. Trop. Mangrove Ecosyst. Coastal Estuarine Stud. 41 (1992).
Rovai, A. S. et al. Global controls on carbon storage in mangrove soils. Nat. Clim. Chang. 8, 534–538. https://doi.org/10.1038/s41558-018-0162-5 (2018).
Google Scholar
Twilley, R. R. & Rivera-Monroy, V. H. Developing performance measures of mangrove wetlands using simulation models of hydrology, nutrient biogeochemistry, and community dynamics. J. Coastal Res. 79–93 (2005).
Bunting, P. et al. The global mangrove watch—A new 2010 global baseline of mangrove extent. Remote Sens. 10, 1669 (2018).
Google Scholar
Giri, C. et al. Status and distribution of mangrove forests of the world using earth observation satellite data. Glob. Ecol. Biogeogr. 20, 154–159 (2011).
Google Scholar
Hamilton, S. E. & Friess, D. A. Global carbon stocks and potential emissions due to mangrove deforestation from 2000 to 2012. Nat. Clim. Chang. 8, 240 (2018).
Google Scholar
Simard, M. et al. Mangrove canopy height globally related to precipitation, temperature and cyclone frequency. Nat. Geosci. 12, 40–45. https://doi.org/10.1038/s41561-018-0279-1 (2019).
Google Scholar
Rovai, A. S. et al. Macroecological patterns of forest structure and allometric scaling in mangrove forests. Glob. Ecol. Biogeogr. 30, 1000–1013. https://doi.org/10.1111/geb.13268 (2021).
Google Scholar
Bouillon, S. et al. Mangrove production and carbon sinks: A revision of global budget estimates. Global Biogeochem. Cycles 22 (2008).
Breithaupt, J. L., Smoak, J. M., Smith III, T. J., Sanders, C. J. & Hoare, A. Organic carbon burial rates in mangrove sediments: Strengthening the global budget. Global Biogeochem. Cycles 26. https://doi.org/10.1029/2012gb004375 (2012).
Duarte, C. M., Losada, I. J., Hendriks, I. E., Mazarrasa, I. & Marbà, N. The role of coastal plant communities for climate change mitigation and adaptation. Nat. Clim. Chang. 3, 961–968. https://doi.org/10.1038/nclimate1970 (2013).
Google Scholar
Olson, D. M. et al. Terrestrial ecoregions of the world: A new map of life on Earth: A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience 51, 933–938. https://doi.org/10.1641/0006-3568(2001)051[0933:Teotwa]2.0.Co;2 (2001).
Google Scholar
Lugo, A. E. & Snedaker, S. C. The ecology of mangroves. Annu. Rev. Ecol. Syst. 5, 39–64 (1974).
Google Scholar
Goldberg, L., Lagomasino, D., Thomas, N. & Fatoyinbo, T. Global declines in human-driven mangrove loss. Glob. Change Biol. 26, 5844–5855. https://doi.org/10.1111/gcb.15275 (2020).
Google Scholar
Hamilton, S. E. & Casey, D. Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21). Glob. Ecol. Biogeogr. 25, 729–738. https://doi.org/10.1111/geb.12449 (2016).
Google Scholar
Kristensen, E. et al. in Mangrove Ecosystems: A Global Biogeographic Perspective (eds. Rivera-Monroy, V.H., Lee, S.Y., Kristensen, E. & Twilley, R.R.) 163–209 (Springer, 2017).
Friess, D. A. JG Watson, Inundation classes, and their influence on paradigms in mangrove forest ecology. Wetlands 37, 603–613. https://doi.org/10.1007/s13157-016-0747-6 (2017).
Google Scholar
Krauss, K. W., Doyle, T. W., Twilley, R. R., Rivera-Monroy, V. H. & Sullivan, J. K. Evaluating the relative contributions of hydroperiod and soil fertility on growth of south Florida mangroves. Hydrobiologia 569, 311–324. https://doi.org/10.1007/s10750-006-0139-7 (2006).
Google Scholar
Zhao, X. C. et al. Modeling soil porewater salinity in mangrove forests (Everglades, Florida, USA) impacted by hydrological restoration and a warming climate. Ecol. Model. 436. https://doi.org/10.1016/j.ecolmodel.2020.109292 (2020).
Sippo, J. Z. et al. Carbon outwelling across the shelf following a massive mangrove dieback in Australia: Insights from radium isotopes. Geochim. Cosmochim. Acta 253, 142–158. https://doi.org/10.1016/j.gca.2019.03.003 (2019).
Google Scholar
Call, M. et al. Spatial and temporal variability of carbon dioxide and methane fluxes over semi-diurnal and spring-neap-spring timescales in a mangrove creek. Geochim. Cosmochim. Acta 150, 211–225. https://doi.org/10.1016/j.gca.2014.11.023 (2015).
Google Scholar
Chen, X. et al. Submarine groundwater discharge-derived carbon fluxes in mangroves: An important component of blue carbon budgets?. J. Geophys. Res. Oceans 123, 6962–6979. https://doi.org/10.1029/2018JC014448 (2018).
Google Scholar
Maher, D. T., Santos, I. R., Golsby-Smith, L., Gleeson, J. & Eyeare, B. D. Groundwater-derived dissolved inorganic and organic carbon exports from a mangrove tidal creek: The missing mangrove carbon sink?. Limnol. Oceanogr. 58, 475–488 (2013).
Google Scholar
Sadat-Noori, M., Santos, I. R., Tait, D. R., Reading, M. J. & Sanders, C. J. High porewater exchange in a mangrove-dominated estuary revealed from short-lived radium isotopes. J. Hydrol. 553, 188–198. https://doi.org/10.1016/j.jhydrol.2017.07.058 (2017).
Google Scholar
Saderne, V. et al. Role of carbonate burial in blue carbon budgets. Nat. Commun. 10. https://doi.org/10.1038/s41467-019-08842-6 (2019).
Santos, I. R., Maher, D. T., Larkin, R., Webb, J. R. & Sanders, C. J. Carbon outwelling and outgassing vs. burial in an estuarine tidal creek surrounded by mangrove and saltmarsh wetlands. Limnol. Oceanogr. 64, 996–1013. https://doi.org/10.1002/lno.11090 (2019).
Sippo, J. Z. et al. Mangrove outwelling is a significant source of oceanic exchangeable organic carbon. Limnol. Oceanogr. Lett. 2, 1–8. https://doi.org/10.1002/lol2.10031 (2017).
Google Scholar
Adame, M. F. et al. Future carbon emissions from global mangrove forest loss. BioRxiv. 1–22. https://doi.org/10.1101/2020.08.27.271189 (2020).
Volta, C. et al. Seasonal variations in dissolved carbon inventory and fluxes in a mangrove-dominated estuary. Global Biogeochem. Cycles 34. https://doi.org/10.1029/2019GB006515 (2020).
Barr, J. G. et al. Controls on mangrove forest-atmosphere carbon dioxide exchanges in western Everglades National Park. J. Geophys. Res. Biogeosci. 115. https://doi.org/10.1029/2009jg001186 (2010).
Barr, J. G., Engel, V., Smith, T. J. & Fuentes, J. D. Hurricane disturbance and recovery of energy balance, CO2 fluxes and canopy structure in a mangrove forest of the Florida Everglades. Agric. For. Meteorol. 153, 54–66. https://doi.org/10.1016/j.agrformet.2011.07.022 (2012).
Google Scholar
Chen, H., Lu, W., Yan, G., Yang, S. & Lin, G. Typhoons exert significant but differential impacts on net ecosystem carbon exchange of subtropical mangrove forests in China. Biogeosciences 11, 5323–5333 (2014).
Google Scholar
Ray, R. et al. Improved model calculation of atmospheric CO2 increment in affecting carbon stock of tropical mangrove forest. Tellus B Chem. Phys. Meteorol. 65, 1–11. https://doi.org/10.3402/tellusb.v65i0.18981 (2013).
Google Scholar
Rosentreter, J. A., Maher, D. T., Erler, D. V., Murray, R. & Eyeare, B. D. Seasonal and temporal CO2 dynamics in three tropical mangrove creeks—A revision of global mangrove CO2 emissions. Geochim. Cosmochim. Acta 222, 729–745. https://doi.org/10.1016/j.gca.2017.11.026 (2018).
Google Scholar
Rosentreter, J. A., Maher, D. T., Erler, D. V., Murray, R. H. & Eyeare, B. D. Methane emissions partially offset “blue carbon” burial in mangroves. Sci. Adv. 4. https://doi.org/10.1126/sciadv.aao4985 (2018).
Troxler, T. G. et al. Component-specific dynamics of riverine mangrove CO2 efflux in the Florida coastal Everglades. Agric. For. Meteorol. 213, 273–282. https://doi.org/10.1016/j.agrformet.2014.12.012 (2015).
Google Scholar
Lugo, A. E. Visible and invisible effects of hurricanes on forest ecosystems: An international review. Austral Ecol. 33, 368–398. https://doi.org/10.1111/j.1442-9993.2008.01894.x (2008).
Google Scholar
Dvorak, V. F. Tropical cyclone intensity analysis and forecasting from satellite imagery. Mon. Weather Rev. 103, 420–430. https://doi.org/10.1175/1520-0493(1975)103%3c0420:Tciaaf%3e2.0.Co;2 (1975).
Google Scholar
Doyle, T. W., Smith III, T. J. & Robblee, M. B. Wind damage effects of Hurricane Andrew on mangrove communities along the southwest coast of Florida, USA. J. Coastal Res. 159–168 (1995).
Imbert, D., Labbe, P. & Rousteau, A. Hurricane damage and forest structure in Guadeloupe, French West Indies. J. Trop. Ecol. 12, 663–680 (1996).
Google Scholar
Kauffman, J. B. & Cole, T. G. Micronesian mangrove forest structure and tree responses to a severe typhoon. Wetlands 30, 1077–1084. https://doi.org/10.1007/s13157-010-0114-y (2010).
Google Scholar
Lagomasino, D. et al. Storm surge, not wind, caused mangrove dieback in southwest Florida following Hurricane Irma. https://doi.org/10.31223/osf.io/q4exh (2020).
Paling, E. I., Kobryn, H. T. & Humphreys, G. Assessing the extent of mangrove change caused by Cyclone Vance in the eastern Exmouth Gulf, northwestern Australia. Estuar. Coast. Shelf Sci. 77, 603–613 (2008).
Google Scholar
Radabaugh, K. R. et al. Mangrove damage, delayed mortality, and early recovery following Hurricane Irma at two landfall sites in Southwest Florida, USA. Estuaries Coasts 43, 1104–1118. https://doi.org/10.1007/s12237-019-00564-8 (2020).
Google Scholar
Salmo, S. G., Lovelock, C. E. & Duke, N. C. Assessment of vegetation and soil conditions in restored mangroves interrupted by severe tropical typhoon ‘Chan-hom’in the Philippines. Hydrobiologia 733, 85–102 (2014).
Google Scholar
Sherman, R. E., Fahey, T. J. & Martinez, P. Hurricane impacts on a mangrove forest in the Dominican Republic: Damage patterns and early recovery 1. Biotropica 33, 393–408. https://doi.org/10.1646/0006-3606(2001)033[0393:Hioamf]2.0.Co;2 (2001).
Google Scholar
Smith, T. J., Robblee, M. B., Wanless, H. R. & Doyle, T. W. Mangroves, hurricanes, and lightning strikes. Bioscience 44, 256–262. https://doi.org/10.2307/1312230 (1994).
Google Scholar
Baldwin, A., Egnotovich, M., Ford, M. & Platt, W. Regeneration in fringe mangrove forests damaged by Hurricane Andrew. Plant Ecol. 157, 151–164 (2001).
Google Scholar
Danielson, T. M. et al. Assessment of Everglades mangrove forest resilience: Implications for above-ground net primary productivity and carbon dynamics. For. Ecol. Manag. 404, 115–125 (2017).
Google Scholar
Imbert, D. Hurricane disturbance and forest dynamics in east Caribbean mangroves. Ecosphere 9. https://doi.org/10.1002/ecs2.2231 (2018).
Piou, C., Feller, I. C., Berger, U. & Chi, F. Zonation patterns of Belizean offshore mangrove forests 41 years after a catastrophic hurricane 1. Biotropica 38, 365–374. https://doi.org/10.1111/j.1744-7429.2006.00156.x (2006).
Google Scholar
Rivera-Monroy, V. H. et al. Long-term demography and stem productivity of Everglades mangrove forests (Florida, USA): Resistance to hurricane disturbance. For. Ecol. Manag. 440. https://doi.org/10.1016/j.foreco.2019.02.036 (2019).
Ouyang, X., Guo, F. & Lee, S. Y. The impact of super-typhoon Mangkhut on sediment nutrient density and fluxes in a mangrove forest in Hong Kong. Sci. Total Environ. 142637. https://doi.org/10.1016/j.scitotenv.2020.142637 (2020).
Xu, X., Hirata, E., Enoki, T. & Tokashiki, Y. Leaf litter decomposition and nutrient dynamics in a subtropical forest after typhoon disturbance. Plant Ecol. 173, 161–170. https://doi.org/10.1023/B:VEGE.0000029319.05980.70 (2004).
Google Scholar
Macreadie, P. I. et al. The future of blue carbon science. Nat. Commun. 10, 1–13 (2019).
Google Scholar
Hochard, J. P., Hamilton, S. & Barbier, E. B. Mangroves shelter coastal economic activity from cyclones. Proc. Natl. Acad. Sci. U.S.A. 116, 12232–12237. https://doi.org/10.1073/pnas.1820067116 (2019).
Google Scholar
Rivera-Monroy, V. H. et al. Tropical cyclone landfall frequency and large-scale environmental impacts along Karstic Coastal Regions (Yucatan Peninsula, Mexico). Appl. Sci. 10, 5815 (2020).
Google Scholar
Benedetto, K. M. & Trepanier, J. C. Climatology and spatiotemporal analysis of North Atlantic rapidly intensifying hurricanes (1851–2017). Atmosphere 11. https://doi.org/10.3390/atmos11030291 (2020).
Powell, M. D. & Reinhold, T. A. Tropical cyclone destructive potential by integrated kinetic energy. Bull. Am. Meteorol. Soc. 88, 513–526 (2007).
Google Scholar
Castañeda-Moya, E., Twilley, R. R. & Rivera-Monroy, V. H. Allocation of biomass and net primary productivity of mangrove forests along environmental gradients in the Florida Coastal Everglades, USA. For. Ecol. Manag. 307, 226–241 (2013).
Google Scholar
Adame, M. F. & Lovelock, C. E. Carbon and nutrient exchange of mangrove forests with the coastal ocean. Hydrobiologia 663, 23–50. https://doi.org/10.1007/s10750-010-0554-7 (2011).
Google Scholar
Day, J. W. et al. A 7 year record of above-ground net primary production in a southeastern Mexican mangrove forest. Aquat. Bot. https://doi.org/10.1016/0304-3770(96)01063-7 (1996).
Google Scholar
Ribeiro, R. d. A., Rovai, A. S., Twilley, R. R. & Castañeda-Moya, E. Spatial variability of mangrove primary productivity in the neotropics. Ecosphere 10, doi:https://doi.org/10.1002/ecs2.2841 (2019).
Twilley, R. R. et al. Litter dynamics in riverine mangrove forests in the Guayas River estuary, Ecuador. Oecologia 111, 109–122. https://doi.org/10.1007/s004420050214 (1997).
Google Scholar
Twilley, R. W., Lugo, A. E. & Patterson-Zucca, C. Litter production and turnover in basin mangrove forests in Southwest Florida. Ecology 67, 670–683. https://doi.org/10.2307/1937691 (1986).
Google Scholar
Taillie, P. J. et al. Widespread mangrove damage resulting from the 2017 Atlantic mega hurricane season. Environ. Res. Lett. 15. https://doi.org/10.1088/1748-9326/ab82cf (2020).
Holland, G. J., Done, J. M., Douglas, R., Saville, G. R. & Ge, M. in Hurricane Risk 23–42 (Springer, 2019).
Breithaupt, J. L., Smoak, J. M., Sanders, C. J. & Troxler, T. G. Spatial variability of organic carbon, CaCO3 and nutrient burial rates spanning a mangrove productivity gradient in the Coastal Everglades. Ecosystems 22, 844–858. https://doi.org/10.1007/s10021-018-0306-5 (2019).
Google Scholar
Ho, D. T. et al. Dissolved carbon biogeochemistry and export in mangrove-dominated rivers of the Florida Everglades. Biogeosciences 14, 2543–2559. https://doi.org/10.5194/bg-14-2543-2017 (2017).
Google Scholar
Reithmaier, G., Johnston, S. G. & Maher, D. T. Mangroves as a Source of Alkalinity and Dissolved Carbon to the Coastal Ocean: A Case Study from the Everglades National Park, Florida Mangroves as a Source of Alkalinity and Dissolved Carbon to the Coastal Ocean: A Case Study from the Everglades National Park. 1–29 (2020).
Han, X., Feng, L., Hu, C. & Kramer, P. Hurricane-induced changes in the Everglades National Park mangrove forest: Landsat observations between 1985 and 2017. J. Geophys. Res. Biogeosci. 123, 3470–3488. https://doi.org/10.1029/2018jg004501 (2018).
Google Scholar
Cortés-Ramos, J., Farfán, L. M. & Herrera-Cervantes, H. Assessment of tropical cyclone damage on dry forests using multispectral remote sensing: The case of Baja California Sur, Mexico. J. Arid Environ. 178. https://doi.org/10.1016/j.jaridenv.2020.104171 (2020).
Doyle, T. W., Krauss, K. W. & Wells, C. J. Landscape analysis and pattern of hurricane impact and circulation on mangrove forests of the Everglades. Wetlands 29, 44–53. https://doi.org/10.1672/07-233.1 (2009).
Google Scholar
Castañeda-Moya, E. et al. Sediment and nutrient deposition associated with hurricane Wilma in mangroves of the Florida Coastal Everglades. Estuaries Coasts 33, 45–58. https://doi.org/10.1007/s12237-009-9242-0 (2010).
Google Scholar
Zhang, K. et al. The role of mangroves in attenuating storm surges. Estuar. Coast. Shelf Sci. 102–103, 11–23. https://doi.org/10.1016/j.ecss.2012.02.021 (2012).
Google Scholar
Castaneda-Moya, E. et al. Hurricanes fertilize mangrove forests in the Gulf of Mexico (Florida Everglades, USA). Proc. Natl. Acad. Sci. U S A 117, 4831–4841. https://doi.org/10.1073/pnas.1908597117 (2020).
Google Scholar
Adame, M. F. et al. Drivers of mangrove litterfall within a Karstic Region affected by frequent hurricanes. Biotropica 45, 147–154. https://doi.org/10.1111/btp.12000 (2013).
Google Scholar
Alongi, D. M. Mangrove forests: Resilience, protection from tsunamis, and responses to global climate change. Estuar. Coast. Shelf Sci. 76, 1–13. https://doi.org/10.1016/j.ecss.2007.08.024 (2008).
Google Scholar
Kovacs, J. M., Blanco-Correa, M. & Flores-Verdugo, F. A logistic regression model of hurricane impacts in a mangrove forest of the Mexican Pacific. J. Coastal Res. 17, 30–37 (2001).
Smith, T. J. et al. Cumulative impacts of hurricanes on Florida mangrove ecosystems: sediment deposition, storm surges and vegetation. Wetlands 29, 24 (2009).
Google Scholar
Vogt, J. et al. Investigating the role of impoundment and forest structure on the resistance and resilience of mangrove forests to hurricanes. Aquat. Bot. 97, 24–29. https://doi.org/10.1016/j.aquabot.2011.10.006 (2012).
Google Scholar
Osland, M. J. et al. Mangrove forests in a rapidly changing world: Global change impacts and conservation opportunities along the Gulf of Mexico coast. Estuar. Coast. Shelf Sci. 214, 120–140. https://doi.org/10.1016/j.ecss.2018.09.006 (2018).
Google Scholar
Ting, M., Kossin, J. P., Camargo, S. J. & Li, C. Past and future hurricane intensity change along the US East Coast. Sci. Rep. 9, 7795 (2019).
Google Scholar
Rego, J. L. & Li, C. On the importance of the forward speed of hurricanes in storm surge forecasting: A numerical study. Geophys. Res. Lett. 36 (2009).
Li, L. & Chakraborty, P. Slower decay of landfalling hurricanes in a warming world. Nature 587, 230–234. https://doi.org/10.1038/s41586-020-2867-7 (2020).
Google Scholar
Shi, L., Olabarrieta, M., Nolan, D. S. & Warner, J. C. Tropical cyclone rainbands can trigger meteotsunamis. Nat. Commun. 11. https://doi.org/10.1038/s41467-020-14423-9 (2020).
Mazda, Y., Kobashi, D. & Okada, S. Tidal-scale hydrodynamics within mangrove swamps. Wetlands Ecol. Manag. 13, 647–655 (2005).
Google Scholar
Krauss, K. W. et al. Water level observations in mangrove swamps during two hurricanes in Florida. Wetlands 29, 142–149. https://doi.org/10.1672/07-232.1 (2009).
Google Scholar
Smith, C. G., Price, R. M., Swarzenski, P. W. & Stalker, J. C. The role of ocean tides on groundwater-surface water exchange in a mangrove-dominated estuary: Shark river slough, Florida Coastal Everglades, USA. Estuaries Coasts 39, 1600–1616. https://doi.org/10.1007/s12237-016-0079-z (2016).
Google Scholar
Wdowinski, S., Bray, R., Kirtman, B. P. & Wu, Z. H. Increasing flooding hazard in coastal communities due to rising sea level: Case study of Miami Beach, Florida. Ocean Coastal Manag. 126, 1–8. https://doi.org/10.1016/j.ocecoaman.2016.03.002 (2016).
Google Scholar
Whelan, K. R. T., Smith, T. J., Anderson, G. H. & Ouellette, M. L. Hurricane Wilma’s impact on overall soil elevation and zones within the soil profile in a mangrove forest. Wetlands 29, 16–23. https://doi.org/10.1672/08-125.1 (2009).
Google Scholar
Hogan, J. A. et al. The frequency of cyclonic wind storms shapes tropical forest dynamism and functional trait dispersion. Forests 8, 1–27. https://doi.org/10.3390/f9070404 (2018).
Google Scholar
Rivera-Monroy, V. H. et al. Current methods to evaluate net primary production and carbon budgets in mangrove forests. Methods Biogeochem. Wetlands, 243–288. https://doi.org/10.2136/sssabookser10.c14 (2013).
Worthington, T. A. et al. A global biophysical typology of mangroves and its relevance for ecosystem structure and deforestation. Sci. Rep. 10, 1–11. https://doi.org/10.1038/s41598-020-71194-5 (2020).
Google Scholar
Yao, Q. et al. A geochemical record of late-holocene hurricane events from the Florida Everglades. Water Resour. Res. 56, e2019WR026857. https://doi.org/10.1029/2019wr026857 (2020).
Troxler, T. G. et al. Integrated carbon budget models for the everglades terrestrial-coastal-oceanic gradient current status and needs for inter-site comparisons. Oceanography 26, 98–107. https://doi.org/10.5670/oceanog.2013.51 (2013).
Google Scholar
Romigh, M. M., Davis, S. E., Rivera-Monroy, V. H. & Twilley, R. R. Flux of organic carbon in a riverine mangrove wetland in the Florida Coastal Everglades. Hydrobiologia 569, 505–516. https://doi.org/10.1007/s10750-006-0152-x (2006).
Google Scholar
Heald, E. J. The production of organic detritus in a south Florida estuary. Univ. Miami Sea Grant Tech. Bull. 6, 1–116 (1971).
Alongi, D. M. Carbon cycling and storage in mangrove forests. Ann. Rev. Mar. Sci. 6, 195–219. https://doi.org/10.1146/annurev-marine-010213-135020 (2014).
Google Scholar
Lin, T. C., Hogan, J. A. & Chang, C. T. Tropical cyclone ecology: A scale-link perspective. Trends Ecol. Evol. 35, 594–604. https://doi.org/10.1016/j.tree.2020.02.012 (2020).
Google Scholar
Lucash, M. S. et al. More than the sum of its parts: how disturbance interactions shape forest dynamics under climate change. Ecosphere 9. https://doi.org/10.1002/ecs2.2293 (2018).
Li, S.-B. et al. Factors regulating carbon sinks in mangrove ecosystems. Glob. Change Biol. 24, 4195–4210. https://doi.org/10.1111/gcb.14322 (2018).
Google Scholar
Odum, E. P. in Estuarine Perspectives (ed Kennedy, V.S.) 485–495 (Academic Press, 1980).
Lee, S. Y. Mangrove outwelling: A review. Hydrobiologia 295, 203–212. https://doi.org/10.1007/BF00029127 (1995).
Google Scholar
Lee, S. Y. et al. Ecological role and services of tropical mangrove ecosystems: A reassessment. Glob. Ecol. Biogeogr. 23, 726–743 (2014).
Google Scholar
Ray, R., Baum, A., Rixen, T., Gleixner, G. & Jana, T. K. Exportation of dissolved (inorganic and organic) and particulate carbon from mangroves and its implication to the carbon budget in the Indian Sundarbans. Sci. Total Environ. 621, 535–547. https://doi.org/10.1016/j.scitotenv.2017.11.225 (2018).
Google Scholar
Price, R. M., Top, Z., Happell, J. D. & Swart, P. K. Use of tritium and helium to define groundwater flow conditions in Everglades National Park. Water Resour. Res. 39. https://doi.org/10.1029/2002WR001929 (2003).
Saha, A. K. et al. A hydrological budget (2002–2008) for a large subtropical wetland ecosystem indicates marine groundwater discharge accompanies diminished freshwater flow. Estuaries Coasts 35, 459–474. https://doi.org/10.1007/s12237-011-9454-y (2012).
Google Scholar
Krauss, K. W. & Osland, M. J. Tropical cyclones and the organization of mangrove forests: a review. Ann. Bot. 125, 213–234. https://doi.org/10.1093/aob/mcz161 (2019).
Google Scholar
Wade, J. E. & Hewson, E. W. Trees as a local climatic wind indicator. J. Appl. Meteorol. 18, 1182–1187 (1979).
Google Scholar
Zhang, K. et al. Airborne laser scanning quantification of disturbances from hurricanes and lightning strikes to mangrove forests in Everglades National Park, USA. Sensors (Basel) 8, 2262–2292. https://doi.org/10.3390/s8042262 (2008).
Google Scholar
Doyle, T. W., Girod, G. F. & Books, M. A. Chapter 12: Modeling mangrove forest migration along the southwest coast of Florida under climate change. in (Ning, Z.H., Turner, R.E., Doyle, T.W., Abdollahi, K. eds.) (2003).
Grueters, U. et al. The mangrove forest dynamics model mesoFON. Ecol. Model. 291, 28–41 (2014).
Google Scholar
Lienard, J., Strigul, N., Liénard, J. & Strigul, N. An individual-based forest model links canopy dynamics and shade tolerances along a soil moisture gradient. R. Soc. Open Sci. 3, 150589. https://doi.org/10.1098/rsos.150589 (2016).
Google Scholar
Amir, A. A. & Duke, N. C. Distinct characteristics of canopy gaps in the subtropical mangroves of Moreton Bay, Australia. Estuar. Coast. Shelf Sci. 222, 66–80. https://doi.org/10.1016/j.ecss.2019.04.007 (2019).
Google Scholar
Craighead, F. C. & Gilbert, V. C. the effects of hurricane Donna on the vegetation of southern Florida. Q. J. Florida Acad. Sci. 25, 1–28 (1962).
Tanner, E. V. J., Kapos, V. & Healey, J. R. Hurricane effects on forest ecosystems in the Caribbean. Biotropica 23, 513–521. https://doi.org/10.2307/2388274 (1991).
Google Scholar
Stanturf, J. A., Goodrick, S. L. & Outcalt, K. W. Disturbance and coastal forests: A strategic approach to forest management in hurricane impact zones. For. Ecol. Manag. 250, 119–135. https://doi.org/10.1016/j.foreco.2007.03.015 (2007).
Google Scholar
Jentsch, A. et al. Climate extremes initiate ecosystem-regulating functions while maintaining productivity. J. Ecol. 99, 689–702. https://doi.org/10.1111/j.1365-2745.2011.01817.x (2011).
Google Scholar
Bongers, F. & Popma, J. Leaf dynamics of seedlings of rain forest species in relation to canopy gaps. Oecologia 82, 122–127 (1990).
Google Scholar
Hikosaka, K. Leaf canopy as a dynamic system: Ecophysiology and optimality in leaf turnover. Ann. Bot. 95, 521–533. https://doi.org/10.1093/aob/mci050 (2005).
Google Scholar
Ouyang, X., Lee, S. Y., Connolly, R. M. & Kainz, M. J. Spatially-explicit valuation of coastal wetlands for cyclone mitigation in Australia and China. Sci. Rep. 8, 1–9. https://doi.org/10.1038/s41598-018-21217-z (2018).
Google Scholar
Childers, D. L. et al. Relating precipitation and water management to nutrient concentrations in the oligotrophic “upside-down” estuaries of the Florida Everglades. Limnol. Oceanogr. 51, 602–616. https://doi.org/10.4319/lo.2006.51.1_part_2.0602 (2006).
Google Scholar
Chen, R. & Twilley, R. R. Patterns of mangrove forest structure and soil nutrient dynamics along the Shark River Estuary, Florida. Estuaries 22, 955–970 (1999).
Google Scholar
Simard, M. et al. Mapping height and biomass of mangrove forests in Everglades National Park with SRTM elevation data. Photogramm. Eng. Remote. Sens. 72, 299–311 (2006).
Google Scholar
Ewe, S. M. L. et al. Spatial and temporal patterns of aboveground net primary productivity (ANPP) along two freshwater-estuarine transects in the Florida Coastal Everglades. Hydrobiologia 569, 459–474. https://doi.org/10.1007/s10750-006-0149-5 (2006).
Google Scholar
He, D., Rivera-Monroy, V. H., Jaffé, R. & Zhao, X. Mangrove leaf species-specific isotopic signatures along a salinity and phosphorus soil fertility gradients in a subtropical estuary. Estuarine Coastal Shelf Sci. 106768. https://doi.org/10.1016/j.ecss.2020.106768 (2020).
Wachnicka, A., Armitage, A. R., Zink, I., Browder, J. & Fourqurean, J. W. Major 2017 hurricanes and their cumulative impacts on coastal waters of the USA and the Caribbean. Estuaries Coasts 43, 941–942. https://doi.org/10.1007/s12237-020-00702-7 (2020).
Google Scholar
Jones, P. D. et al. Hemispheric and large-scale land-surface air temperature variations: An extensive revision and an update to 2010. J. Geophys. Res. Atmos. 117. https://doi.org/10.1029/2011JD017139 (2012).
Rivera-Monroy, V. H., Day, J. W., Twilley, R. R., Vera-Herrera, F. & Coronado-Molina, C. Flux of nitrogen and sediment in a fringe mangrove forest in terminos lagoon, Mexico. Estuar. Coast. Shelf Sci. 40, 139–160. https://doi.org/10.1016/S0272-7714(05)80002-2 (1995).
Google Scholar
Chen, R. & Twilley, R. R. A simulation model of organic matter and nutrient accumulation in mangrove wetland soils. Biogeochemistry 44, 93–118. https://doi.org/10.1007/BF00993000 (1999).
Google Scholar
Castañeda-Moya, E. et al. Patterns of root dynamics in Mangrove forests along environmental gradients in the Florida Coastal Everglades, USA. Ecosystems 14, 1178–1195. https://doi.org/10.1007/s10021-011-9473-3 (2011).
Google Scholar
Source: Ecology - nature.com