in

Tropical deforestation induces thresholds of reproductive viability and habitat suitability in Earth’s largest eagles

  • 1.

    McQueen, A. et al. Evolutionary drivers of seasonal plumage colours: colour change by moult correlates with sexual selection, predation risk and seasonality across passerines. Ecol. Lett. 22, 1838–1849 (2019).

    PubMed 

    Google Scholar 

  • 2.

    Menezes, J. F., Kotler, B. P. & Dixon, A. K. Risk pump in Gerbillus pyramidum: quality of poor habitats increases with more conspecifics. Ethol. Ecol. Evol. 31, 140–154 (2019).

    Google Scholar 

  • 3.

    Stephens, D., Brown, J. & Ydenberg, R. Foraging: Behavior and Ecology. (University of Chicago Press, 2007).

  • 4.

    Schweiger, A., Fünfstück, H.-J. & Beierkuhnlein, C. Availability of optimal-sized prey affects global distribution patterns of the golden eagle Aquila chrysaetos. J. Avian Biol. 46, 81–88 (2015).

    Google Scholar 

  • 5.

    Carbone, C. & Gittleman, J. L. A common rule for the scaling of carnivore density. Science (80-.) 295, 2273–2276 (2002).

    ADS 
    CAS 

    Google Scholar 

  • 6.

    Athreya, V., Odden, M. & Linnell, J. A cat among the dogs: leopard Panthera pardus diet in a human-dominated landscape in western Maharashtra, India. Oryx https://doi.org/10.1017/s0030605314000106 (2014).

    Article 

    Google Scholar 

  • 7.

    Van der Meer, T., McPherson, S. & Downs, C. Temporal changes in prey composition and biomass delivery to African Crowned Eagle nestlings in urban areas of KwaZulu-Natal, South Africa. Ostrich 83, 241–250 (2018).

    Google Scholar 

  • 8.

    Miranda, E. B. P., Ribeiro-Jr., R. P. & Strüssmann, C. The ecology of human-anaconda conflict: a study using internet videos. Trop. Conserv. Sci. 9, 26–60 (2016).

    Google Scholar 

  • 9.

    Paviolo, A. et al. A biodiversity hotspot losing its top predator: the challenge of jaguar conservation in the Atlantic Forest of South America. Sci. Rep. 6, 37147 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    Miranda, E. B. P., Menezes, J. F. S., Farias, C. C., Munn, C. & Peres, C. A. Species distribution modeling reveals strongholds and potential reintroduction areas for the world’s largest eagle. PLoS ONE 14, e0216323 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Marshall, B. M. et al. Hits close to home: repeated persecution of King Cobras (Ophiophagus hannah) in Northeastern Thailand. Trop. Conserv. Sci. 11, 1–14 (2018).

    Google Scholar 

  • 12.

    Carbone, C., Pettorelli, N. & Stephens, P. A. The bigger they come, the harder they fall: body size and prey abundance influence predator-prey ratios. Biol. Lett. 7, 312–315 (2011).

    PubMed 

    Google Scholar 

  • 13.

    Garcia-Heras, M. S., Mougeot, F., Simmons, R. E. & Arroyo, B. Regional and temporal variation in diet and provisioning rates suggest weather limits prey availability for an endangered raptor. Ibis (Lond. 1859) 159, 567–579 (2017).

    Google Scholar 

  • 14.

    Miranda, E. B., Jácomo, A. T. D. A., Tôrres, N. M., Alves, G. B. & Silveira, L. What are jaguars eating in a half-empty forest? Insights from diet in an overhunted Caatinga reserve. J. Mammal. 99, 724–731 (2018).

    Google Scholar 

  • 15.

    Ellis, D. H. & Gombobaatar, S. Ecology of the Golden Eagle in Mongolia, part 2: prey. J. Raptor Res. 54, 30–37 (2020).

    Google Scholar 

  • 16.

    Zuluaga, S. & Echeverry-Galvis, M. Á. Domestic fowl in the diet of the Black-and-chestnut Eagle (Spizaetus isidori) in the Eastern Andes of Colombia: a potential conflict with humans. Ornitol. Neotrop. 27, 113–120 (2016).

    Google Scholar 

  • 17.

    McPherson, S. C. & Brown, M. Downs CT (2015) Diet of the crowned eagle (Stephanoaetus coronatus) in an urban landscape: potential for human-wildlife conflict?. Urban Ecosyst. https://doi.org/10.1007/s11252-015-0500-6 (2015).

    Article 

    Google Scholar 

  • 18.

    Michalski, F., Boulhosa, R. L. P., Faria, A. & Peres, C. A. Human-wildlife conflicts in a fragmented Amazonian forest landscape: determinants of large felid depredation on livestock. Anim. Conserv. 9, 179–188 (2006).

    Google Scholar 

  • 19.

    Lamichhane, B. R. et al. Rapid recovery of tigers Panthera tigris in Parsa Wildlife Reserve, Nepal. Oryx 52, 16–24 (2018).

    Google Scholar 

  • 20.

    Tortato, F. R., Izzo, T. J., Hoogesteijn, R. & Peres, C. A. The numbers of the beast: valuation of jaguar (Panthera onca) tourism and cattle depredation in the Brazilian Pantanal. Glob. Ecol. Conserv. 11, 106–114 (2017).

    Google Scholar 

  • 21.

    Macdonald, C. et al. Conservation potential of apex predator tourism. Biol. Conserv. 215, 132–141 (2017).

    Google Scholar 

  • 22.

    Karanth, K. U., Kumar, N. S., Nichols, J. D., Link, W. A. & Hines, J. E. Tigers and their prey: predicting carnivore densities from prey abundance. Proc. Natl. Acad. Sci. USA 101, 4854–4858 (2004).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 23.

    Nelson, A. A. et al. Native prey distribution and migration mediates wolf (Canis lupus) predation on domestic livestock in the Greater Yellowstone Ecosystem 94(4). Can. J. Zool. 94, 291–299 (2016).

    Google Scholar 

  • 24.

    Terborgh, J. & Estes, J. Trophic Cascades: Predators, Prey, and the Changing Dynamics of Nature (Island Press, 2013).

  • 25.

    Miranda, E. B. P. Prey composition of harpy eagles (Harpia harpyja) in Raleighvallen, Suriname. Trop. Conserv. Sci. 11, 1–8 (2018).

    Google Scholar 

  • 26.

    Miranda, E. B. P. Conservation implications of harpy eagle Harpia harpyja predation patterns. Endanger. Species Res. 29, 69–79 (2015).

    Google Scholar 

  • 27.

    Vargas González, J. D. J. et al. Breeding habitat suitability index for the harpy eagle in Panama: conservation implications. J. Raptor Res. Press, (2020).

  • 28.

    Touchton, J., Hsu, Y. & Palleroni, A. Foraging ecology of reintroduced captive-bred subadult harpy eagles (Harpia harpyja) on Barro Colorado Island, Panama. Ornitol. Neotrop. 13, 365–379 (2002).

    Google Scholar 

  • 29.

    Miranda, E. B. P., Peres, C. A., Marini, M. Â. & Downs, C. T. Harpy Eagle (Harpia harpyja) nest tree selection: logging in Amazonian forests threatens Earth’s largest eagle. Biol. Conserv. 250, 108754 (2020).

    Google Scholar 

  • 30.

    Muñiz-López, R. et al. Movements of Harpy Eagles Harpia harpyja during their first two years after hatching Movements of Harpy Eagles Harpia harpyja during their first two years after hatching. Bird Study 3657, 509–514 (2016).

    Google Scholar 

  • 31.

    Muñiz-López, R. Harpy Eagle (Harpia harpyja) mortality in Ecuador. Stud. Neotrop. Fauna Environ. 30, 1–5 (2017).

    Google Scholar 

  • 32.

    Urios, V., Muñiz-López, R. & Vidal-Mateo, J. Juvenile Dispersal of Harpy Eagles (Harpia harpyja) in Ecuador. J. Raptor Res. 51, 439–445 (2017).

    Google Scholar 

  • 33.

    Monsalvo, J. A. B., Heming, N. M. & Marini, M. Â. Breeding biology of neotropical accipitriformes: current knowledge and research priorities. Rev. Bras. Ornitol. 26, 151–186 (2018).

    Google Scholar 

  • 34.

    Hall, C. Harpy Eagle Studbook Harpia harpyja North American Regional. (2011).

  • 35.

    Alvarez-Cordero, E. Biology and conservation of the harpy eagle in Venezuela and Panama. DSc Thesis. (University of Florida, Florida, USA, 1996).

  • 36.

    Rettig, N. Breeding behavior of the harpy eagle (<i>Harpia harpyja<i/>). Auk 95, 629–643 (1978).

    Google Scholar 

  • 37.

    Giudice, R., Piana, R. & Williams, M. Tree architecture as a determinant factor in nest-tree selection by Harpy Eagles. In Neotropical Raptors (eds. Bildstein, K. L., Barber, D. R. & Zimmerman, A.) 14–22 (Hawk Mountain Sanctuary, 2007).

  • 38.

    Miranda, E. B. P. de, Peres, C. A. & Downs, C. T. Perceptions of livestock predation (or the lack of it) drive the persecution of Earth’s largest eagle. Anim. Conserv. Press (2020).

  • 39.

    Giraldo-Amaya, M. A. T. E. O., Aguiar-Silva, F. H., Aparício, K. M. & Zuluaga, S. Human persecution on the harpy eagle: a widespread threat?. J. Raptor Res. 55, 1–6 (2020).

    Google Scholar 

  • 40.

    Terborgh, J. et al. Ecological meltdown in predator-free forest fragments. Science (80-). 294, 1923–1926 (2001).

    ADS 
    CAS 

    Google Scholar 

  • 41.

    Aguiar-Silva, H. Uso e seleção de recursos por harpia em múltiplas escalas espaciais: persistência e vulnerabilidade (INPA, 2016).

  • 42.

    Aguiar-Silva, F., Sanaiotti, T. & Luz, B. Food habits of the Harpy Eagle, a top predator from the Amazonian rainforest canopy. J. Raptor Res. 48, 24–45 (2014).

    Google Scholar 

  • 43.

    Silva, D. A. Comunidade de mamíferos de médio e grande porte em fragmentos florestais da amazônia meridional (Unemat – Nova Xavantina, 2016).

  • 44.

    Miranda, E. B. P., Campbell-Thompson, E., Muela, A. & Vargas, F. H. Sex and breeding status affect prey composition of Harpy Eagles Harpia harpyja. J. Ornithol. 159, 141–150 (2017).

    Google Scholar 

  • 45.

    Terborgh, J. Five New World Primates: A Study in Comparative Ecology (Princeton University Press, 2014).

  • 46.

    Oliveira, A. T. M. et al. Primate and ungulate responses to teak agroforestry in a southern Amazonian landscape. Mamm. Biol. 96, 45–52 (2019).

    Google Scholar 

  • 47.

    Michalski, F. & Peres, C. A. Gamebird responses to anthropogenic forest fragmentation and degradation in a southern Amazonian landscape. PeerJ 5, e3442 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 48.

    Barbosa, H. Estrutura de comunidades de mamíferos de médio e grande porte em fragmentos florestais da Amazônia Meridional (Unemat – Cáceres, 2012).

  • 49.

    Michalski, F. & Peres, C. A. Anthropogenic determinants of primate and carnivore local extinctions in a fragmented forest landscape of southern Amazonia. Biol. Conserv. 124, 383–396 (2005).

    Google Scholar 

  • 50.

    Trinca, C. T. & Ferrari, S. F. Caça em assentamento rural na amazônia matogrossense. Diálogos em ambiente e sociedade no Brasil (2006).

  • 51.

    Schneider, M. & Peres, C. A. Environmental costs of government-sponsored agrarian settlements in Brazilian Amazonia. PLoS ONE 10, e0134016 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 52.

    Cavalcante, T. et al. Niche overlap between two sympatric frugivorous Neotropical primates: improving ecological niche models using closely-related taxa. Biodivers. Conserv. 29, 2749–2763 (2020).

    Google Scholar 

  • 53.

    Peres, C. A. Synergistic effects of subsistence hunting and habitat fragmentation on Amazonian forest vertebrates. Conserv. Biol. 15, 1490–1505 (2001).

    Google Scholar 

  • 54.

    Bowler, M. et al. Harpy eagles (Harpia harpyja) nesting at Refugio Amazonas, Tambopata, Peru feed on abundant disturbance-tolerant species. Food Webs 24, e00154 (2020).

    Google Scholar 

  • 55.

    Cavalcante, T., Tuyama, C. A. & Mourthe, I. Insights into the development of a juvenile harpy eagle’s hunting skills. Acta Amaz 49, 114–117 (2019).

    Google Scholar 

  • 56.

    Campbell-Thompson, E., Vargas, F. H., Watson, R. T., Muela, A. & Cáceres, N. C. Effect of sex and age at release on the independence of hacked harpy eagles. J. Raptor Res. 46, 158–167 (2012).

    Google Scholar 

  • 57.

    Watson, R. T., McClure, C. J. W., Vargas, F. H. & Jenny, J. P. Trial restoration of the harpy eagle, a large, long-lived, tropical forest raptor panama and belize. J. Raptor Res. 50, 3–22 (2016).

    Google Scholar 

  • 58.

    Touchton, J. The Harpy Eagle. In The eagle watchers: Observing and conserving raptors around the world (eds. Tingay, R. & Katzner, T.) 264 (Cornell University Press, 2010).

  • 59.

    Crisostomo, A. C., Alencar, A., Mesquita, I., Silva, I. & Dourado, M. Terras Indígenas Na Amazônia Brasileira: reservas de carbono e barreiras ao desmatamento (2015).

  • 60.

    Villas Boas, O. & Villas Boas, C. A marcha para o oeste: a epopéia da expedição Roncador-Xingu (Globo, 1994).

  • 61.

    Tufiño, P. Cunsi Pindo: The Mistress of the Monkeys (Simbioe, 2007).

  • 62.

    Reina, R. E. & Kensinger, K. M. The Gift of Birds: Featherworking of Native South American Peoples. (University Museum of Archaeology & Anthropology, 1991).

  • 63.

    Anonymous. Lei de Proteção à Fauna, Lei 5.197, de 03 de janeiro de 1967. (1967).

  • 64.

    Campos-Silva, J. V. & Peres, C. A. Community-based management induces rapid recovery of a high-value tropical freshwater fishery. Sci. Rep. 6, 34745 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 65.

    Antunes, A. P. et al. Subsistence hunting rights in the Brazilian Amazon. Land Use Policy 84, 1–11 (2019).

    Google Scholar 

  • 66.

    Aleixo, A. & Galetti, M. The conservation of the avifauna in a lowland Atlantic forest in south-east Brazil. Bird Conserv. Int. 7, 235–261 (1997).

    Google Scholar 

  • 67.

    Lees, A. C. & Peres, C. A. Conservation value of remnant riparian forest corridors of varying quality for Amazonian birds and mammals. Conserv. Biol. 22, 439–449 (2008).

    PubMed 

    Google Scholar 

  • 68.

    Zimbres, B., Machado, R. B. & Peres, C. A. Anthropogenic drivers of headwater and riparian forest loss and degradation in a highly fragmented southern Amazonian landscape. Land Use Policy 72, 354–363 (2018).

    Google Scholar 

  • 69.

    Michalski, F., Metzger, J. P. & Peres, C. A. Rural property size drives patterns of upland and riparian forest retention in a tropical deforestation frontier. Glob. Environ. Change 20, 705–712 (2010).

    Google Scholar 

  • 70.

    Mori, S. A. & Prance, G. T. Taxonomy, ecology, and economic botany of the Brazil nut (Bertholletia excelsa Humb. & Bonpl.: Lecythidaceae). Adv. Econ. Bot. 8, 130–150 (1990).

    Google Scholar 

  • 71.

    Buckley, R. Conservation Tourism (CAB International, 2010).

  • 72.

    Ribeiro, S. M. C. et al. Can multifunctional livelihoods including recreational ecosystem services (RES) and non timber forest products (NTFP) maintain biodiverse forests in the Brazilian Amazon?. Ecosyst. Serv. 31, 517–526 (2018).

    Google Scholar 

  • 73.

    Strand, J. et al. Spatially explicit valuation of the Brazilian Amazon Forest’s Ecosystem Services. Nat. Sustain. 1, 657 (2018).

    Google Scholar 

  • 74.

    Kirkby, C. A. et al. Closing the ecotourism-conservation loop in the Peruvian Amazon. Environ. Conserv. 38, 6–17 (2011).

    Google Scholar 

  • 75.

    Kirkby, C. A. et al. The market triumph of ecotourism: an economic investigation of the private and social benefits of competing land uses in the Peruvian Amazon. PLoS ONE 5, e13015 (2010).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 76.

    Vianna, G. M. et al. Shark-diving tourism as a financing mechanism for shark conservation strategies in Malaysia. Mar. Policy 94, 220–226 (2018).

    Google Scholar 

  • 77.

    Fearnside, P. M. Deforestation in Brazilian Amazonia: history, rates, and consequences. Conserv. Biol. 19, 680–688 (2005).

    Google Scholar 

  • 78.

    Junior, C. S. & Lima, M. Soy Moratorium in Mato Grosso: deforestation undermines the agreement. Land Use Policy 71, 540–542 (2018).

    Google Scholar 

  • 79.

    Lima, M. et al. The paradoxical situation of the white-lipped peccary (Tayassu pecari) in the state of Mato Grosso, Brazil. Perspect. Ecol. Conserv. 17, 36–39 (2019).

    Google Scholar 

  • 80.

    Eri, M. et al. Capitalizing on opportunities provided by pasture sudden death to enhance livestock sustainable management in Brazilian Amazonia. Environ. Dev. 4, 100499 (2020).

    Google Scholar 

  • 81.

    Anonymous. Novo Código Florestal, Lei 12.651 de 25 de maio de 2012, Dispõe sobre a proteção da vegetação nativa (Subchefia de assuntos jurídicos, 2012).

  • 82.

    Zimbres, B., Peres, C. A. & Machado, R. B. Terrestrial mammal responses to habitat structure and quality of remnant riparian forests in an Amazonian cattle-ranching landscape. Biol. Conserv. 206, 283–292 (2017).

    Google Scholar 

  • 83.

    Koeppen, W. Climatologia: con un estudio de los climas de la tierra (1948).

  • 84.

    Radam-Brasil. Projeto Radam-Brasil: levantamento de recursos naturais (1983).

  • 85.

    Ayres, J. M. Observações sobre a ecologia e o comportamento dos cuxiús (Chiropotes albinasus e Chiropotes satanas, Cebidae: Primates) (1981).

  • 86.

    Miranda, E. B. P. de et al. Harpy Eagle nest activity patterns: Potential ecotourism and conservation opportunities in the Amazon Forest. Bird Conserv. Int. (in press) (2021).

  • 87.

    Rosenfield, R. N., Grier, J. W. & Fyfe, R. W. reducing management and research disturbance. In Raptor Research and Management Techniques (ed. Bird, D. M.) 351–364 (Hancock House Publishers, 2007).

  • 88.

    Pagel, J. E. & Thorstrom, R. K. Accessing nests. In Raptor Research and Management Techniques (ed. Bird, D. M.) 171–180 (Hancock House Publishers, 2007).

  • 89.

    Ellis, D. H. & Schimitt, N. J. Behavior of the Golden Eagle: An Illustrated Ethogram. (Hancock House Publishers, 2017).

  • 90.

    Ferguson-Lees, J. & Christie, D. Raptors of the World (Houghton Mifflin Harcourt, 2001).

  • 91.

    Brown, D. A test of randomness of nest spacing. Wildfowl 26, 102–103 (1975).

    Google Scholar 

  • 92.

    Emmons, L. & Feer, F. Neotropical Rainforest Mammals: A Field Guide (University of Chicago Press, 1997).

  • 93.

    Sick, H. Ornitologia brasileira, uma introdução (Universidade de Brasília, 1984).

  • 94.

    Goffart, M. Function and Form in the Sloth (Pergamon Press, 1971).

  • 95.

    Dunning, J. Handbook of Avian Body Masses (CRC, 1993).

    Google Scholar 

  • 96.

    Gotelli, N. & Aaron, M. A Primer of Ecological Statistics (Sinauer Associates, 2005).

  • 97.

    Krebs, C. Ecological Methodology (Benjamin/Cummings, 1999).

  • 98.

    Ashe, E., Noren, D. P. & Williams, R. Animal behaviour and marine protected areas: incorporating behavioural data into the selection of marine protected areas for an endangered killer whale population. Anim. Conserv. 13, 196–203 (2010).

    Google Scholar 

  • 99.

    Miranda, E. B. P., Peres, C. A. & Downs, C. T. Changes in soil fertility mosaics in the Amazon Forest induced by an apex predator. Press (2020).

  • 100.

    R Core. R: A Language and Environment for Statistical Computing. (2020).


  • Source: Ecology - nature.com

    Exposure to (Z)-11-hexadecenal [(Z)-11-16:Ald] increases Brassica nigra susceptibility to subsequent herbivory

    GlobSnow v3.0 Northern Hemisphere snow water equivalent dataset