in

Understanding the seasonality of performance resilience to climate volatility in Mediterranean dairy sheep

  • 1.

    Henry, B. K., Eckard, R. J. & Beauchemin, K. A. Review: Adaptation of ruminant livestock production systems to climate changes. Animal 12, s445–s456. https://doi.org/10.1017/S1751731118001301 (2018).

    CAS  Article  PubMed  Google Scholar 

  • 2.

    Sejian, V., Kumar, D., Gaughan, J. B. & Naqvi, S. M. K. Effect of multiple environmental stressors on the adaptive capability of Malpura rams based on physiological responses in a semi-arid tropical environment. J. Vet. Behav. 17, 6–13. https://doi.org/10.1016/j.jveb.2016.10.009 (2017).

    Article  Google Scholar 

  • 3.

    Segnalini, M., Bernabucci, U., Vitali, A., Nardone, A. & Lacetera, N. Temperature humidity index scenarios in the Mediterranean basin. Int. J. Biometeorol. 57, 451–458. https://doi.org/10.1007/s00484-012-0571-5 (2013).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 4.

    Carabano, M. J., Bachagha, K., Ramon, M. & Diaz, C. Modeling heat stress effect on Holstein cows under hot and dry conditions: Selection tools. J. Dairy Sci. 97, 7889–7904. https://doi.org/10.3168/jds.2014-8023 (2014).

    CAS  Article  PubMed  Google Scholar 

  • 5.

    Finocchiaro, R., van Kaam, J. B., Portolano, B. & Misztal, I. Effect of heat stress on production of Mediterranean dairy sheep. J. Dairy Sci. 88, 1855–1864. https://doi.org/10.3168/jds.S0022-0302(05)72860-5 (2005).

    CAS  Article  PubMed  Google Scholar 

  • 6.

    Sevi, A. & Caroprese, M. Impact of heat stress on milk production, immunity and udder health in sheep: A critical review. Small Ruminant Res. 107, 1–7. https://doi.org/10.1016/j.smallrumres.2012.07.012 (2012).

    Article  Google Scholar 

  • 7.

    Giorgi, F. & Lionello, P. Climate change projections for the Mediterranean region. Glob. Planet. Change 63, 90–104. https://doi.org/10.1016/j.gloplacha.2007.09.005 (2008).

    ADS  Article  Google Scholar 

  • 8.

    Ozturk, T., Ceber, Z. P., Türkeş, M. & Kurnaz, M. L. Projections of climate change in the Mediterranean Basin by using downscaled global climate model outputs. Int. J. Climatol. 35, 4276–4292. https://doi.org/10.1002/joc.4285 (2015).

    Article  Google Scholar 

  • 9.

    Williams, C. M. et al. Understanding evolutionary impacts of seasonality: An introduction to the symposium. Integr. Comp. Biol. 57, 921–933. https://doi.org/10.1093/icb/icx122 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 10.

    Barash, H., Silanikove, N., Shamay, A. & Ezra, E. Interrelationships among ambient temperature, day length, and milk yield in dairy cows under a Mediterranean climate. J. Dairy Sci. 84, 2314–2320. https://doi.org/10.3168/jds.S0022-0302(01)74679-6 (2001).

    CAS  Article  PubMed  Google Scholar 

  • 11.

    Bernabucci, U. et al. Metabolic and hormonal acclimation to heat stress in domesticated ruminants. Animal 4, 1167–1183. https://doi.org/10.1017/S175173111000090X (2010).

    CAS  Article  PubMed  Google Scholar 

  • 12.

    Santana, M. L. Jr. et al. Detrimental effect of selection for milk yield on genetic tolerance to heat stress in purebred Zebu cattle: Genetic parameters and trends. J. Dairy Sci. 98, 9035–9043. https://doi.org/10.3168/jds.2015-9817 (2015).

    CAS  Article  PubMed  Google Scholar 

  • 13.

    Escarcha, J., Lassa, J. & Zander, K. Livestock under climate change: A systematic review of impacts and adaptation. Climate https://doi.org/10.3390/cli6030054 (2018).

    Article  Google Scholar 

  • 14.

    van der Werf, J., Graser, H.-U., Frankham, R. & Gondro, C. Adaptation and Fitness in Animal Populations: Evolutionary and Breeding Perspectives on Genetic Resource Management (Springer, New York, 2009).

    Google Scholar 

  • 15.

    van der Waaij, E. H. A resource allocation model describing consequences of artificial selection under metabolic stress. J. Anim. Sci. 82, 973–981. https://doi.org/10.2527/2004.824973x (2004).

    Article  PubMed  Google Scholar 

  • 16.

    Colditz, I. G. & Hine, B. C. Resilience in farm animals: Biology, management, breeding and implications for animal welfare. Anim. Prod. Sci. https://doi.org/10.1071/an15297 (2016).

    Article  Google Scholar 

  • 17.

    Berghof, T. V. L., Poppe, M. & Mulder, H. A. Opportunities to improve resilience in animal breeding programs. Front. Genet. 9, 692. https://doi.org/10.3389/fgene.2018.00692 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 18.

    Mulder, H. A. Genomic selection improves response to selection in resilience by exploiting genotype by environment interactions. Front. Genet. 7, 178. https://doi.org/10.3389/fgene.2016.00178 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 19.

    Bishop, S. C. A consideration of resistance and tolerance for ruminant nematode infections. Front. Genet. 3, 168. https://doi.org/10.3389/fgene.2012.00168 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • 20.

    Knap, P. Breeding robust pigs. Aust. J. Exp. Agric. https://doi.org/10.1071/EA05041 (2005).

    Article  Google Scholar 

  • 21.

    Marjanovic, J., Mulder, H. A., Ronnegard, L. & Bijma, P. Modelling the co-evolution of indirect genetic effects and inherited variability. Heredity 121, 631–647. https://doi.org/10.1038/s41437-018-0068-z (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 22.

    Mulder, H. A., Bijma, P. & Hill, W. G. Prediction of breeding values and selection responses with genetic heterogeneity of environmental variance. Genetics 175, 1895–1910. https://doi.org/10.1534/genetics.106.063743 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 23.

    Mulder, H. A., Ronnegard, L., Fikse, W. F., Veerkamp, R. F. & Strandberg, E. Estimation of genetic variance for macro- and micro-environmental sensitivity using double hierarchical generalized linear models. Genet. Sel. Evol. 45, 23. https://doi.org/10.1186/1297-9686-45-23 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • 24.

    Westneat, D. F., Wright, J. & Dingemanse, N. J. The biology hidden inside residual within-individual phenotypic variation. Biol. Rev. Camb. Philos. Soc. 90, 729–743. https://doi.org/10.1111/brv.12131 (2015).

    Article  PubMed  Google Scholar 

  • 25.

    Strandberg, E., Brotherstone, S., Wall, E. & Coffey, M. P. Genotype by environment interaction for first-lactation female fertility traits in UK dairy cattle. J. Dairy Sci. 92, 3437–3446. https://doi.org/10.3168/jds.2008-1844 (2009).

    CAS  Article  PubMed  Google Scholar 

  • 26.

    Bernabucci, U. et al. The effects of heat stress in Italian Holstein dairy cattle. J. Dairy Sci. 97, 471–486. https://doi.org/10.3168/jds.2013-6611 (2014).

    CAS  Article  PubMed  Google Scholar 

  • 27.

    Carabaño, M. J. et al. Breeding and genetics symposium: Breeding for resilience to heat stress effects in dairy ruminants. A comprehensive review. J. Anim. Sci. https://doi.org/10.2527/jas2016.1114 (2017).

    Article  PubMed  Google Scholar 

  • 28.

    Ramon, M., Diaz, C., Perez-Guzman, M. D. & Carabano, M. J. Effect of exposure to adverse climatic conditions on production in Manchega dairy sheep. J. Dairy Sci. 99, 5764–5779. https://doi.org/10.3168/jds.2016-10909 (2016).

    CAS  Article  PubMed  Google Scholar 

  • 29.

    Sanchez-Molano, E. et al. Genetic analysis of novel phenotypes for farm animal resilience to weather variability. BMC Genet. 20, 84. https://doi.org/10.1186/s12863-019-0787-z (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 30.

    Knap, P. W. & Su, G. Genotype by environment interaction for litter size in pigs as quantified by reaction norms analysis. Animal 2, 1742–1747. https://doi.org/10.1017/S1751731108003145 (2008).

    CAS  Article  PubMed  Google Scholar 

  • 31.

    Kolmodin, R., Strandberg, E., Madsen, P., Jensen, J. & Jorjani, H. Genotype by environment interaction in nordic dairy cattle studied using reaction norms. Acta Agric. Scand. Sect. A Anim. Sci. 52, 11–24. https://doi.org/10.1080/09064700252806380 (2002).

    Article  Google Scholar 

  • 32.

    Rauw, W. M. & Gomez-Raya, L. Genotype by environment interaction and breeding for robustness in livestock. Front. Genet. 6, 310. https://doi.org/10.3389/fgene.2015.00310 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 33.

    Stinchcombe, J. R., Function-valued Traits Working Group, G. & Kirkpatrick, M. Genetics and evolution of function-valued traits: Understanding environmentally responsive phenotypes. Trends Ecol. Evol. 27, 637–647. https://doi.org/10.1016/j.tree.2012.07.002 (2012).

    Article  PubMed  Google Scholar 

  • 34.

    Reeves, J. L. et al. Seasonal temperature and precipitation effects on cow–calf production in northern mixed-grass prairie. Livestock Sci. 155, 355–363. https://doi.org/10.1016/j.livsci.2013.04.015 (2013).

    Article  Google Scholar 

  • 35.

    Lateef, A., Das, H., Panchasara, H. H., Nilufar, H. & Sanap, M. J. Seasonal effects on milk yield, erythrocytic and leukocytic indices of Kankrej cattle (Bos indicus). Vet. World 7, 472–477. https://doi.org/10.14202/vetworld.2014.472-477 (2014).

    Article  Google Scholar 

  • 36.

    Angilletta, M. J. Thermal adaptation: A theoretical and empirical synthesis. Therm. Adapt. Theor. Empir. Synth. https://doi.org/10.1093/acprof:oso/9780198570875.001.1 (2009).

    Article  Google Scholar 

  • 37.

    Kingsolver, J., Diamond, S. & Gomulkiewicz, R. Integrative Organismal Biology (eds. Martin, L. B., Ghalambor, C. K. & Woods, H. A.) 39–53 (Wiley, New York, 2015).

  • 38.

    Hoffmann, I. Climate change and the characterization, breeding and conservation of animal genetic resources. Anim. Genet. 41(Suppl 1), 32–46. https://doi.org/10.1111/j.1365-2052.2010.02043.x (2010).

    Article  PubMed  Google Scholar 

  • 39.

    Molik, E. et al. Effect of day length and exogenous melatonin on chemical composition of sheep milk. Arch. Anim. Breed. 54, 177–187. https://doi.org/10.5194/aab-54-177-2011 (2011).

    CAS  Article  Google Scholar 

  • 40.

    Molik, E., Misztal, T. & Dorota A. The Effect of Physiological and Environmental Factors on the Prolactin Profile in Seasonally Breeding Animals. https://www.intechopen.com/books/prolactin/the-effect-of-physiological-and-environmental-factors-on-the-prolactin-profile-in-seasonally-breedin (2013).

  • 41.

    Peana, I., Fois, G. & Cannas, A. Effects of heat stress and diet on milk production and feed and energy intake of Sarda ewes. Italian J. Anim. Sci. https://doi.org/10.4081/ijas.2007.1s.577 (2010).

    Article  Google Scholar 

  • 42.

    Peana, I. et al. Cold markedly influences milk yield of Sardinian dairy sheep farms. Italian J. Anim. Sci. 6, 580–580. https://doi.org/10.4081/ijas.2007.1s.580 (2007).

    Article  Google Scholar 

  • 43.

    do Amaral, B. C. et al. Heat-stress abatement during the dry period: Does cooling improve transition into lactation?. J. Dairy Sci. 92, 5988–5999. https://doi.org/10.3168/jds.2009-2343 (2009).

    CAS  Article  PubMed  Google Scholar 

  • 44.

    do Amaral, B. C. et al. Heat stress abatement during the dry period influences prolactin signaling in lymphocytes. Domest. Anim. Endocrinol. 38, 38–45. https://doi.org/10.1016/j.domaniend.2009.07.005 (2010).

    CAS  Article  PubMed  Google Scholar 

  • 45.

    do Amaral, B. C. et al. Heat stress abatement during the dry period influences metabolic gene expression and improves immune status in the transition period of dairy cows. J. Dairy Sci. 94, 86–96. https://doi.org/10.3168/jds.2009-3004 (2011).

    CAS  Article  PubMed  Google Scholar 

  • 46.

    Serradilla, J. M. et al. Characterisation of Goats’ Response to Heat Stress: Tools to Improve Heat Tolerance. https://www.intechopen.com/books/goat-science/characterisation-of-goats-response-to-heat-stress-tools-to-improve-heat-tolerance (2018).

  • 47.

    Beilharz, R. G., Luxford, B. G. & Wilkinson, J. L. Quantitative genetics and evolution: Is our understanding of genetics sufficient to explain evolution?. J. Anim. Breed. Genet. 110, 161–170. https://doi.org/10.1111/j.1439-0388.1993.tb00728.x (1993).

    CAS  Article  PubMed  Google Scholar 

  • 48.

    Rauw, W. M. “Introduction” in Resource Allocation Theory Applied to Farm Animal Production (ed. Rauw, W.M.) 1–21 (CAB International Publishing, Wallingford, 2008).

  • 49.

    Garner, J. B. et al. Genomic selection improves heat tolerance in dairy cattle. Sci. Rep. 6, 34114. https://doi.org/10.1038/srep34114 (2016).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 50.

    International Committee for Animal Recording (ICAR). ICAR Guidelines: Dairy Sheep and Goats. http://www.icar.org (2017).

  • 51.

    Basdagianni, Z., Sinapis, E. & Banos, G. Evaluation of reference lactation length in Chios dairy sheep. Animal 13(1), 1–7. https://doi.org/10.1017/S1751731118000769 (2018).

    Article  PubMed  Google Scholar 

  • 52.

    Misztal, I. et al. BLUPF90 and related programs (BGF90). In Proceedings of 7th World Congress on Genetics Applied to Livestock Production, Vol. 743 (2002).

  • 53.

    R Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, 2019). http://www.r-project.org/index.html.

    Google Scholar 

  • 54.

    International Committee for Animal Recording (ICAR). ICAR Guidelines: Dairy Sheep and Goats. http://www.icar.org (2020)

  • 55.

    Gilmour, A. R., Gogel, B. J., Cullis, B. R., Welham, S. J. & Thompson, R. ASReml User Guide Release 4.1 Structural Specification. (2015).


  • Source: Ecology - nature.com

    Could lab-grown plant tissue ease the environmental toll of logging and agriculture?

    How to get more electric cars on the road