in

Untangling the influence of biotic and abiotic factors on habitat selection by a tropical rodent

  • 1.

    Webster, M. S. Role of predators in the early post-settlement demography of coral-reef fishes. Oecologia 131(1), 52–60 (2002).

    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 2.

    Ward-Fear, G. et al. The ecological and life history correlates of boldness in free-ranging lizards. Ecosphere 9, e02125 (2018).

    Article 

    Google Scholar 

  • 3.

    Hyslop, N. L., Meyers, J. M., Cooper, R. J. & Stevenson, D. J. Effects of body size and sex of Drymarchon couperi (Eastern Indigo Snake) on habitat use, movements, and home range size in Georgia. J. Wildl. Manag. 78, 101–111 (2014).

    Article 

    Google Scholar 

  • 4.

    Roe, J. H., Kish, A. L. & Nacy, J. P. Variation and repeatability of home range in a forest-dwelling terrestrial turtle: implications for prescribed fire in forest management. J. Zool. 310(1), 71–81 (2020).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Campanella, F., Auster, P. J., Taylor, J. C. & Muñoz, R. C. Dynamics of predator–prey habitat use and behavioral interactions over diel periods at sub-tropical reefs. PLoS ONE 14(2), e0211886 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 6.

    Ruttenberg, B. I. et al. Predator-induced demographic shifts in coral reef fish assemblages. PLoS ONE 6(6), e21062 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 7.

    Delgado, M. D. M., Bettega, C., Martens, J. & Packert, M. Ecotypic changes of alpine birds to climate change. Sci. Rep. 9, 16082 (2019).

    PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 

  • 8.

    He, P., Maldonado-Chaparro, A. A. & Farine, D. R. The role of habitat configuration in shaping social structure: a gap in studies of animal social complexity. Behav. Ecol. Sociobiol. 73, 9 (2019).

    Article 

    Google Scholar 

  • 9.

    Abramsky, Z., Rosensweig, M. L. & Subach, A. Measuring the benefit of habitat selection. Behav. Ecol. 13, 497–502 (2002).

    Article 

    Google Scholar 

  • 10.

    Rosenzweig, M. L. A theory of habitat selection. Ecology 62(2), 327–335 (1981).

    Article 

    Google Scholar 

  • 11.

    Fieberg, J., Matthiopoulos, J., Hebblewhite, M., Boyce, M. S. & Frair, J. L. Correlation and studies of habitat selection: problem, red herring or opportunity?. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365(1550), 2233–2244 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 12.

    Manly, B. F., McDonald, L., Thomas, D., McDonald, T. L. & Erickson, W. P. Resource Selection by Animals: Statistical Design and Analysis for Field Studies (Springer, 2002).

    Google Scholar 

  • 13.

    Aplin, K. P. & Baverstock, P. R. Pale field-rat, Rattus tunneyi. In The Mammals of Australia 3rd edn (Eds. S. van Dyck and R. Strahan. Reed New Holland, 2008).

  • 14.

    B.O.M. Australian Bureau of Meterology. Australian Government, http://www.bom.gov.au/ (Accessed 25 May 2016).

  • 15.

    Thiele, K. R. & Prober, S. M. Assessment of impacts of feral horses (Equus caballus) in the Australian alps, part 1. Report to Australian Alps Liaison committee. https://www.yumpu.com/en/document/read/37598528/assessment-of-impacts-of-feral-horses-australian-alps-national- (1999).

  • 16.

    Ward-Fear, G., Brown, G. P., Pearson, D. J. & Shine, R. An invasive tree facilitates the persistence of native rodents on an overgrazed floodplain in tropical Australia. Austral. Ecol. 42, 385–393 (2017).

    Article 

    Google Scholar 

  • 17.

    Braithwaite, R. W. & Griffiths, A. D. The paradox of Rattus tunneyi: endangerment of a native pest. Wildl. Res. 2, 1–21 (1996).

    Article 

    Google Scholar 

  • 18.

    Clutton-Brock, T. H. Mammalian mating systems. Proc. R. Soc. Lond. B Biol. Sci. 236, 339–372 (1989).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 19.

    Woinarski, J. C. Z., Burbidge, A. A. & Harrison, P. L. The action plan for Australian Mammals 2012. (Eds. CSIRO; CSIRO Publishing, 2014).

  • 20.

    Young, S. & Hill, B. Threatened species of the Northern Territory: Pale Field-Rat Rattus tunneyi. Online factsheet. (Eds.Department of Land and Resource Management, Northern Territory Government.) https://nt.gov.au/__data/assets/pdf_file/0020/205517/pale-field-rat.pdf (2016).

  • 21.

    IUCN International Union for the Conservation of Nature. https://www.iucnredlist.org/species/19369/115150024#threats ( (Accessed 11 May 2021).

  • 22.

    O’Neill, S., Short, J. & Calver, M. The distribution, habitat preference and population dynamics of the pale field-rat (Rattus tunneyi) at Edel Land, Shark Bay, Western Australia: the role of refuges and refugia in population persistence. Wildl. Res. WR20005; (2021). (In press).

  • 23.

    Tuft, K. et al. Cats are a key threatening factor to the survival of local populations of native small mammals in Australia’s tropical savannas: evidence from translocations trials with Rattus tunneyi. Wildl. Res. (2021). (WR20193; In press).

  • 24.

    Parsons, W. & Cuthbertson, E. Noxious Weeds of Australia (CSIRO Publishing, 1992).

    Google Scholar 

  • 25.

    W.A. Government. Chinee apple: declared pest. Online factsheet (Eds. Department of Agriculture and Fisheries WA). https://www.agric.wa.gov.au/declared-plants/chinee-apple-declared-pest (2016).

  • 26.

    Greenhouse, S. W. & Geisser, S. On methods in the analysis of profile data. Psychometrika 24, 95–112 (1959).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • 27.

    Brown, J. S. Patch use as an indicator of habitat preference, predation risk, and competition. Behav. Ecol. Sociobiol. 22, 37–47 (1988).

    Article 

    Google Scholar 

  • 28.

    Charnov, E. L. Optimal foraging, the marginal value theorem. Theor. Popul. Biol. 9, 129–136 (1976).

    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar 

  • 29.

    Bedoya-Perez, M., Carthey, A. R., Mella, V. A., McArthur, C. & Banks, P. A practical guide to avoid giving up on giving-up densities. Behav. Ecol. Sociobiol. 67(10), 1–13 (2013).

    Article 

    Google Scholar 

  • 30.

    Long, J. L. Introduced Mammals of the World: Their History, Distribution Ad Influence (CSIRO Publishing, 2003).

    Book 

    Google Scholar 

  • 31.

    Kutt, A. S. & Gordon, I. J. Variation in terrestrial mammal abundance on pastoral and conservation land tenures in north-eastern Australian tropical savvanas. Anim. Conserv. 15(4), 416–425 (2012).

    Article 

    Google Scholar 

  • 32.

    Legge, S., Kennedy, M. S., Lloyd, R., Murphy, S. & Fisher, A. Rapid recovery of mammal fauna in the central Kimberley, northern Australia, following removal of introduced herbivores. Austral. Ecol. 36(7), 791–799 (2011).

    Article 

    Google Scholar 

  • 33.

    Cherubin, R. C., Venn, S. E., Driscoll, D. A., Doherty, T. S. & Ritchie, E. G. Feral horse impacts on threatened plants and animals in sub-alpine and montane environments in Victoria, Australia. Ecol. Manag. Restor. 20, 47–56 (2019).

    Article 

    Google Scholar 

  • 34.

    Schulz, M., Schroder, M. & Green, K. The occurrence of the broad-toothed rat Mastacomys fuscus in relation to feral horse impacts. Ecol. Manag. Restor. 20, 31–36 (2019).

    Article 

    Google Scholar 

  • 35.

    Braithwaite, R. W. & Muller, W. Rainfall, groundwater and refuges: predicting extinctions of Australian tropical mammal species. Aust. J. Ecol. 22, 57–67 (1997).

    Article 

    Google Scholar 

  • 36.

    Short, J., O’Neill, S. & Richards, J. D. Irruption and collapse of a population of pale field-rat (Rattus tunneyi) at Heirisson Prong, Shark Bay, Western Australia. Aust. Mammal. 40, 36–46 (2018).

    Article 

    Google Scholar 

  • 37.

    Shrader, A. M., Brown, J. S., Kerley, G. I. H. & Kotler, B. P. Do free-ranging domestic goats show “landscapes of fear”? Patch use in response to habitat features and predator cues. J. Arid Environ. 72, 1811–1819 (2008).

    Article 
    ADS 

    Google Scholar 

  • 38.

    Lagos, V. O., Contreras, L. C., Meserve, P. L., Gutierrez, J. R. & Jaksic, F. M. Effects of predation risk on space use by small mammals: a field experiment with a Neotropical rodent. Oikos 74, 259–264 (1995).

    Article 

    Google Scholar 

  • 39.

    Arthur, A. D., Pech, R. P. & Dickman, C. R. Effects of predation and habitat structure on the population dynamics of house mice in large outdoor enclosures. Oikos 108, 562–572 (2005).

    Article 

    Google Scholar 

  • 40.

    Brown, J. S. Vigilance, patch use and habitat selection: foraging under predation risk. Evol. Ecol. Res. 1, 49–71 (1999).

    Google Scholar 

  • 41.

    Wheeler, H. C. & Hik, D. S. Giving-up densities and foraging behaviour indicate possible effects of shrub encroachment on arctic ground squirrels. Anim. Behav. 95, 1–8 (2014).

    Article 

    Google Scholar 

  • 42.

    Carthey, A. J. R. & Banks, P. B. Foraging in groups affects giving-up densities: solo foragers quit sooner. Oecologia 178, 707–713. https://doi.org/10.1007/s00442-015-3274-x (2015).

    Article 
    PubMed 
    ADS 

    Google Scholar 

  • 43.

    Frank, A. S. K. et al. Experimental evidence that feral cats cause local extirpation of small mammals in Australia’s tropical savannas. J. Appl. Ecol. 51, 1486–1493 (2014).

    Article 

    Google Scholar 

  • 44.

    Hradsky, B. B., Mildwaters, C., Ritchie, E. G., Christie, F. & Di Stefano, J. Responses of invasive predators and native prey to a prescribed forest fire. J. Mammal. 98(3), 835–847 (2017).

    Article 

    Google Scholar 

  • 45.

    Newsome, A. E. & Corbett, L. K. Outbreaks of rodents in semi-arid and arid Australia: causes, preventions, and evolutionary considerations. In Rodents in Desert Environments (eds Prakash, I. & Gosh, P. K.) 117–153 (Dr W. Junk, 1975).

    Chapter 

    Google Scholar 

  • 46.

    Ims, R. A. Responses in spatial organization and behaviour to manipulations of the food resource in the vole Clethrionomys rufocanus. J. Anim. Ecol. 56, 585–596 (1987).

    Article 

    Google Scholar 

  • 47.

    Ims, R. A. Spatial clumping of sexually receptive females induces space sharing among male voles. Nature 335, 541–543 (1988).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 48.

    Ims, R. A. Male spacing systems in microtine rodents. Am. Nat. 130, 475–484 (1987).

    Article 

    Google Scholar 

  • 49.

    Crowcroft, P. Territoriality in wild house mice, Mus musculus. J. Mammal. 36, 299–301 (1955).

    Article 

    Google Scholar 

  • 50.

    Wolff, J. O. Rodent Societies : An Ecological and Evolutionary Perspective (The University of Chicago Press, 2007).

    Book 

    Google Scholar 

  • 51.

    Watts, C. H. S. & Aslin, H. J. The Rodents of Australia (Angus & Robertson Publishers, 1981).

    Google Scholar 

  • 52.

    Laundre, J. W. et al. The landscape of fear: the missing link to understand top-down and bottom-up controls of prey abundance?. Ecology 95, 1141–1152 (2014).

    PubMed 
    Article 

    Google Scholar 

  • 53.

    Creel, S., Christianson, D., Liley, S. & Winnie, J. A. Jr. Predation risk affects reproductive physiology and demography of elk. Science 315, 960 (2007).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 54.

    Lande, R. & Barrowclough, G. F. Effective population size, genetic variation and their use in population management. In Viable Populations for Conservation (ed. Soulé, M. E.) 87–123 (Cambridge University Press, 1987).

    Chapter 

    Google Scholar 

  • 55.

    Frankham, R. Genetics and extinction. Biol. Conserv. 126, 131–140 (2005).

    Article 

    Google Scholar 

  • 56.

    Watts, C. H. S. The foods eaten by some Australian rodents (Muridae). Aust. Wildl. Res. 4, 151–157 (1977).

    Article 

    Google Scholar 

  • 57.

    Zavaleta, E. S., Hobbs, R. J. & Mooney, H. A. Viewing invasive species removal in a whole ecosystem context. Trends Ecol. Evol. 16, 454–459 (2001).

    Article 

    Google Scholar 

  • 58.

    Schlaepfer, M. A., Sax, D. F. & Olden, J. D. The potential conservation value of non-native species. Conserv. Biol. 25, 428–437 (2011).

    PubMed 
    Article 

    Google Scholar 

  • 59.

    Utz, R. M., Slater, A., Rosche, H. & Carson, W. P. Do dense layers of invasive plants elevate the foraging intensity of small mammals in temperate deciduous forests? A case study from Pennsylvania, USA. NeoBiota 56, 73–88 (2020).

    Article 

    Google Scholar 

  • 60.

    Crooks, J. A. Assessing invader roles within changing ecosystems: historical and experimental perspectives on an exotic mussel in an urbanized lagoon. Biol. Invasions 3, 23–36 (2001).

    Article 

    Google Scholar 

  • 61.

    Guiden, P. W. & Orrock, J. L. Invasive exotic shrub modifies a classic animal–habitat relationship and alters patterns of vertebrate seed predation. Ecology 98, 321–327 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 62.

    Gorman, D. & Turra, A. The role of mangrove revegetation as a means of restoring macrofaunal communities along degraded coasts. Sci. Total Environ. 566, 223–229 (2016).

    PubMed 
    Article 
    ADS 
    CAS 

    Google Scholar 

  • 63.

    Gann, G. D. et al. International principles and standards for the practice of ecological restoration. Second edition. Restor. Ecol. 27, S1–S46. https://doi.org/10.1111/rec.13035 (2019).

    Article 

    Google Scholar 

  • 64.

    Parreira, B. & Chikhi, L. On some genetic consequences of social structure, mating systmes, dispersal, and sampling. Proc. Natl. Acad. Sci. 112(26), E3318–E3326 (2015).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 65.

    Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 


  • Source: Ecology - nature.com

    Helarchaeota and co-occurring sulfate-reducing bacteria in subseafloor sediments from the Costa Rica Margin

    Canopy distribution and microclimate preferences of sterile and wild Queensland fruit flies