Webster, M. S. Role of predators in the early post-settlement demography of coral-reef fishes. Oecologia 131(1), 52–60 (2002).
Google Scholar
Ward-Fear, G. et al. The ecological and life history correlates of boldness in free-ranging lizards. Ecosphere 9, e02125 (2018).
Google Scholar
Hyslop, N. L., Meyers, J. M., Cooper, R. J. & Stevenson, D. J. Effects of body size and sex of Drymarchon couperi (Eastern Indigo Snake) on habitat use, movements, and home range size in Georgia. J. Wildl. Manag. 78, 101–111 (2014).
Google Scholar
Roe, J. H., Kish, A. L. & Nacy, J. P. Variation and repeatability of home range in a forest-dwelling terrestrial turtle: implications for prescribed fire in forest management. J. Zool. 310(1), 71–81 (2020).
Google Scholar
Campanella, F., Auster, P. J., Taylor, J. C. & Muñoz, R. C. Dynamics of predator–prey habitat use and behavioral interactions over diel periods at sub-tropical reefs. PLoS ONE 14(2), e0211886 (2019).
Google Scholar
Ruttenberg, B. I. et al. Predator-induced demographic shifts in coral reef fish assemblages. PLoS ONE 6(6), e21062 (2011).
Google Scholar
Delgado, M. D. M., Bettega, C., Martens, J. & Packert, M. Ecotypic changes of alpine birds to climate change. Sci. Rep. 9, 16082 (2019).
Google Scholar
He, P., Maldonado-Chaparro, A. A. & Farine, D. R. The role of habitat configuration in shaping social structure: a gap in studies of animal social complexity. Behav. Ecol. Sociobiol. 73, 9 (2019).
Google Scholar
Abramsky, Z., Rosensweig, M. L. & Subach, A. Measuring the benefit of habitat selection. Behav. Ecol. 13, 497–502 (2002).
Google Scholar
Rosenzweig, M. L. A theory of habitat selection. Ecology 62(2), 327–335 (1981).
Google Scholar
Fieberg, J., Matthiopoulos, J., Hebblewhite, M., Boyce, M. S. & Frair, J. L. Correlation and studies of habitat selection: problem, red herring or opportunity?. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365(1550), 2233–2244 (2010).
Google Scholar
Manly, B. F., McDonald, L., Thomas, D., McDonald, T. L. & Erickson, W. P. Resource Selection by Animals: Statistical Design and Analysis for Field Studies (Springer, 2002).
Aplin, K. P. & Baverstock, P. R. Pale field-rat, Rattus tunneyi. In The Mammals of Australia 3rd edn (Eds. S. van Dyck and R. Strahan. Reed New Holland, 2008).
B.O.M. Australian Bureau of Meterology. Australian Government, http://www.bom.gov.au/ (Accessed 25 May 2016).
Thiele, K. R. & Prober, S. M. Assessment of impacts of feral horses (Equus caballus) in the Australian alps, part 1. Report to Australian Alps Liaison committee. https://www.yumpu.com/en/document/read/37598528/assessment-of-impacts-of-feral-horses-australian-alps-national- (1999).
Ward-Fear, G., Brown, G. P., Pearson, D. J. & Shine, R. An invasive tree facilitates the persistence of native rodents on an overgrazed floodplain in tropical Australia. Austral. Ecol. 42, 385–393 (2017).
Google Scholar
Braithwaite, R. W. & Griffiths, A. D. The paradox of Rattus tunneyi: endangerment of a native pest. Wildl. Res. 2, 1–21 (1996).
Google Scholar
Clutton-Brock, T. H. Mammalian mating systems. Proc. R. Soc. Lond. B Biol. Sci. 236, 339–372 (1989).
Google Scholar
Woinarski, J. C. Z., Burbidge, A. A. & Harrison, P. L. The action plan for Australian Mammals 2012. (Eds. CSIRO; CSIRO Publishing, 2014).
Young, S. & Hill, B. Threatened species of the Northern Territory: Pale Field-Rat Rattus tunneyi. Online factsheet. (Eds.Department of Land and Resource Management, Northern Territory Government.) https://nt.gov.au/__data/assets/pdf_file/0020/205517/pale-field-rat.pdf (2016).
IUCN International Union for the Conservation of Nature. https://www.iucnredlist.org/species/19369/115150024#threats ( (Accessed 11 May 2021).
O’Neill, S., Short, J. & Calver, M. The distribution, habitat preference and population dynamics of the pale field-rat (Rattus tunneyi) at Edel Land, Shark Bay, Western Australia: the role of refuges and refugia in population persistence. Wildl. Res. WR20005; (2021). (In press).
Tuft, K. et al. Cats are a key threatening factor to the survival of local populations of native small mammals in Australia’s tropical savannas: evidence from translocations trials with Rattus tunneyi. Wildl. Res. (2021). (WR20193; In press).
Parsons, W. & Cuthbertson, E. Noxious Weeds of Australia (CSIRO Publishing, 1992).
W.A. Government. Chinee apple: declared pest. Online factsheet (Eds. Department of Agriculture and Fisheries WA). https://www.agric.wa.gov.au/declared-plants/chinee-apple-declared-pest (2016).
Greenhouse, S. W. & Geisser, S. On methods in the analysis of profile data. Psychometrika 24, 95–112 (1959).
Google Scholar
Brown, J. S. Patch use as an indicator of habitat preference, predation risk, and competition. Behav. Ecol. Sociobiol. 22, 37–47 (1988).
Google Scholar
Charnov, E. L. Optimal foraging, the marginal value theorem. Theor. Popul. Biol. 9, 129–136 (1976).
Google Scholar
Bedoya-Perez, M., Carthey, A. R., Mella, V. A., McArthur, C. & Banks, P. A practical guide to avoid giving up on giving-up densities. Behav. Ecol. Sociobiol. 67(10), 1–13 (2013).
Google Scholar
Long, J. L. Introduced Mammals of the World: Their History, Distribution Ad Influence (CSIRO Publishing, 2003).
Google Scholar
Kutt, A. S. & Gordon, I. J. Variation in terrestrial mammal abundance on pastoral and conservation land tenures in north-eastern Australian tropical savvanas. Anim. Conserv. 15(4), 416–425 (2012).
Google Scholar
Legge, S., Kennedy, M. S., Lloyd, R., Murphy, S. & Fisher, A. Rapid recovery of mammal fauna in the central Kimberley, northern Australia, following removal of introduced herbivores. Austral. Ecol. 36(7), 791–799 (2011).
Google Scholar
Cherubin, R. C., Venn, S. E., Driscoll, D. A., Doherty, T. S. & Ritchie, E. G. Feral horse impacts on threatened plants and animals in sub-alpine and montane environments in Victoria, Australia. Ecol. Manag. Restor. 20, 47–56 (2019).
Google Scholar
Schulz, M., Schroder, M. & Green, K. The occurrence of the broad-toothed rat Mastacomys fuscus in relation to feral horse impacts. Ecol. Manag. Restor. 20, 31–36 (2019).
Google Scholar
Braithwaite, R. W. & Muller, W. Rainfall, groundwater and refuges: predicting extinctions of Australian tropical mammal species. Aust. J. Ecol. 22, 57–67 (1997).
Google Scholar
Short, J., O’Neill, S. & Richards, J. D. Irruption and collapse of a population of pale field-rat (Rattus tunneyi) at Heirisson Prong, Shark Bay, Western Australia. Aust. Mammal. 40, 36–46 (2018).
Google Scholar
Shrader, A. M., Brown, J. S., Kerley, G. I. H. & Kotler, B. P. Do free-ranging domestic goats show “landscapes of fear”? Patch use in response to habitat features and predator cues. J. Arid Environ. 72, 1811–1819 (2008).
Google Scholar
Lagos, V. O., Contreras, L. C., Meserve, P. L., Gutierrez, J. R. & Jaksic, F. M. Effects of predation risk on space use by small mammals: a field experiment with a Neotropical rodent. Oikos 74, 259–264 (1995).
Google Scholar
Arthur, A. D., Pech, R. P. & Dickman, C. R. Effects of predation and habitat structure on the population dynamics of house mice in large outdoor enclosures. Oikos 108, 562–572 (2005).
Google Scholar
Brown, J. S. Vigilance, patch use and habitat selection: foraging under predation risk. Evol. Ecol. Res. 1, 49–71 (1999).
Wheeler, H. C. & Hik, D. S. Giving-up densities and foraging behaviour indicate possible effects of shrub encroachment on arctic ground squirrels. Anim. Behav. 95, 1–8 (2014).
Google Scholar
Carthey, A. J. R. & Banks, P. B. Foraging in groups affects giving-up densities: solo foragers quit sooner. Oecologia 178, 707–713. https://doi.org/10.1007/s00442-015-3274-x (2015).
Google Scholar
Frank, A. S. K. et al. Experimental evidence that feral cats cause local extirpation of small mammals in Australia’s tropical savannas. J. Appl. Ecol. 51, 1486–1493 (2014).
Google Scholar
Hradsky, B. B., Mildwaters, C., Ritchie, E. G., Christie, F. & Di Stefano, J. Responses of invasive predators and native prey to a prescribed forest fire. J. Mammal. 98(3), 835–847 (2017).
Google Scholar
Newsome, A. E. & Corbett, L. K. Outbreaks of rodents in semi-arid and arid Australia: causes, preventions, and evolutionary considerations. In Rodents in Desert Environments (eds Prakash, I. & Gosh, P. K.) 117–153 (Dr W. Junk, 1975).
Google Scholar
Ims, R. A. Responses in spatial organization and behaviour to manipulations of the food resource in the vole Clethrionomys rufocanus. J. Anim. Ecol. 56, 585–596 (1987).
Google Scholar
Ims, R. A. Spatial clumping of sexually receptive females induces space sharing among male voles. Nature 335, 541–543 (1988).
Google Scholar
Ims, R. A. Male spacing systems in microtine rodents. Am. Nat. 130, 475–484 (1987).
Google Scholar
Crowcroft, P. Territoriality in wild house mice, Mus musculus. J. Mammal. 36, 299–301 (1955).
Google Scholar
Wolff, J. O. Rodent Societies : An Ecological and Evolutionary Perspective (The University of Chicago Press, 2007).
Google Scholar
Watts, C. H. S. & Aslin, H. J. The Rodents of Australia (Angus & Robertson Publishers, 1981).
Laundre, J. W. et al. The landscape of fear: the missing link to understand top-down and bottom-up controls of prey abundance?. Ecology 95, 1141–1152 (2014).
Google Scholar
Creel, S., Christianson, D., Liley, S. & Winnie, J. A. Jr. Predation risk affects reproductive physiology and demography of elk. Science 315, 960 (2007).
Google Scholar
Lande, R. & Barrowclough, G. F. Effective population size, genetic variation and their use in population management. In Viable Populations for Conservation (ed. Soulé, M. E.) 87–123 (Cambridge University Press, 1987).
Google Scholar
Frankham, R. Genetics and extinction. Biol. Conserv. 126, 131–140 (2005).
Google Scholar
Watts, C. H. S. The foods eaten by some Australian rodents (Muridae). Aust. Wildl. Res. 4, 151–157 (1977).
Google Scholar
Zavaleta, E. S., Hobbs, R. J. & Mooney, H. A. Viewing invasive species removal in a whole ecosystem context. Trends Ecol. Evol. 16, 454–459 (2001).
Google Scholar
Schlaepfer, M. A., Sax, D. F. & Olden, J. D. The potential conservation value of non-native species. Conserv. Biol. 25, 428–437 (2011).
Google Scholar
Utz, R. M., Slater, A., Rosche, H. & Carson, W. P. Do dense layers of invasive plants elevate the foraging intensity of small mammals in temperate deciduous forests? A case study from Pennsylvania, USA. NeoBiota 56, 73–88 (2020).
Google Scholar
Crooks, J. A. Assessing invader roles within changing ecosystems: historical and experimental perspectives on an exotic mussel in an urbanized lagoon. Biol. Invasions 3, 23–36 (2001).
Google Scholar
Guiden, P. W. & Orrock, J. L. Invasive exotic shrub modifies a classic animal–habitat relationship and alters patterns of vertebrate seed predation. Ecology 98, 321–327 (2017).
Google Scholar
Gorman, D. & Turra, A. The role of mangrove revegetation as a means of restoring macrofaunal communities along degraded coasts. Sci. Total Environ. 566, 223–229 (2016).
Google Scholar
Gann, G. D. et al. International principles and standards for the practice of ecological restoration. Second edition. Restor. Ecol. 27, S1–S46. https://doi.org/10.1111/rec.13035 (2019).
Google Scholar
Parreira, B. & Chikhi, L. On some genetic consequences of social structure, mating systmes, dispersal, and sampling. Proc. Natl. Acad. Sci. 112(26), E3318–E3326 (2015).
Google Scholar
Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).
Google Scholar
Source: Ecology - nature.com