in

Unveiling African rainforest composition and vulnerability to global change

  • 1.

    Diffenbaugh, N. S. & Giorgi, F. Climate change hotspots in the CMIP5 global climate model ensemble. Clim. Change 114, 813–822 (2012).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 2.

    United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects: The 2017 Revision, Key Findings and Advance Tables. Working Paper No. ESA/P/WP/248 (2017).

  • 3.

    Malhi, Y., Adu-Bredu, S., Asare, R. A., Lewis, S. L. & Mayaux, P. African rainforests: past, present and future. Phil. Trans. R. Soc. B 368, 20120312 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 4.

    James, R., Washington, R. & Rowell, D. P. Implications of global warming for the climate of African rainforests. Phil. Trans. R. Soc. B 368, 20120298 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 5.

    Abernethy, K., Maisels, F. & White, L. J. Environmental issues in Central Africa. Annu. Rev. Environ. Resour. 41, 1–33 (2016).

    Article 

    Google Scholar 

  • 6.

    Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 7.

    De Wasseige, C., Tadoum, M., Atyi, E. & Doumenge, C. The Forests of the Congo Basin: Forests and Climate Change (Weyrich, 2015).

  • 8.

    Stévart, T. et al. A third of the tropical African flora is potentially threatened with extinction. Sci. Adv. 5, eaax9444 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 9.

    Parmentier, I. et al. The odd man out? Might climate explain the lower tree α-diversity of African rain forests relative to Amazonian rain forests? J. Ecol. 95, 1058–1071 (2007).

    Article 

    Google Scholar 

  • 10.

    Réjou-Méchain, M. et al. Regional variation in tropical forest tree species composition in the Central African Republic: an assessment based on inventories by forest companies. J. Trop. Ecol. 24, 663–674 (2008).

    Article 

    Google Scholar 

  • 11.

    Réjou-Méchain, M. et al. Tropical tree assembly depends on the interactions between successional and soil filtering processes. Glob. Ecol. Biogeogr. 23, 1440–1449 (2014).

    Article 

    Google Scholar 

  • 12.

    Fayolle, A. et al. Geological substrates shape tree species and trait distributions in African moist forests. PLoS One 7, e42381 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 13.

    Fayolle, A. et al. Patterns of tree species composition across tropical African forests. J. Biogeogr. 41, 2320–2331 (2014).

    Article 

    Google Scholar 

  • 14.

    Droissart, V. et al. Beyond trees: biogeographical regionalization of tropical Africa. J. Biogeogr. 45, 1153–1167 (2018).

    Article 

    Google Scholar 

  • 15.

    Sosef, M. S. et al. Exploring the floristic diversity of tropical Africa. BMC Biol. 15, 15 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 16.

    Parmentier, I. et al. Predicting alpha diversity of African rain forests: models based on climate and satellite-derived data do not perform better than a purely spatial model. J. Biogeogr. 38, 1164–1176 (2011).

    Article 

    Google Scholar 

  • 17.

    Bry, X., Trottier, C., Verron, T. & Mortier, F. Supervised component generalized linear regression using a PLS-extension of the fisher scoring algorithm. J. Multivariate Anal. 119, 47–60 (2013).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • 18.

    ter Steege, H. et al. Continental-scale patterns of canopy tree composition and function across Amazonia. Nature 443, 444–447 (2006).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 19.

    Slik, J. W. et al. Soils on exposed Sunda shelf shaped biogeographic patterns in the equatorial forests of Southeast Asia. Proc. Natl Acad. Sci. USA 108, 12343–12347 (2011).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 20.

    Philippon, N. et al. The light-deficient climates of western Central African evergreen forests. Environ. Res. Lett. 14, 034007 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 21.

    Sullivan, M. J. P. et al. Long-term thermal sensitivity of Earth’s tropical forests. Science 368, 869–874 (2020).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 22.

    Beale, C. M., Lennon, J. J. & Gimona, A. Opening the climate envelope reveals no macroscale associations with climate in European birds. Proc. Natl Acad. Sci. USA 105, 14908–14912 (2008).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 23.

    Deblauwe, V. et al. Remotely sensed temperature and precipitation data improve species distribution modelling in the tropics. Glob. Ecol. Biogeogr. 25, 443–454 (2016).

    Article 

    Google Scholar 

  • 24.

    Maguire, K. C. et al. Controlled comparison of species- and community-level models across novel climates and communities. Proc. R. Soc. B 283, 20152817 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 25.

    Morin-Rivat, J. et al. Present-day central African forest is a legacy of the 19th century human history. eLife 6, e20343 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 26.

    Ricklefs, R. E. Intrinsic dynamics of the regional community. Ecol. Lett. 18, 497–503 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 27.

    Violle, C. et al. Let the concept of trait be functional! Oikos 116, 882–892 (2007).

    Article 

    Google Scholar 

  • 28.

    Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).

    ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 29.

    Rüger, N. et al. Demographic trade-offs predict tropical forest dynamics. Science 368, 165–168 (2020).

    ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 30.

    Ouédraogo, D.-Y. et al. The determinants of tropical forest deciduousness: disentangling the effects of rainfall and geology in central Africa. J. Ecol. 104, 924–935 (2016).

    Article 
    CAS 

    Google Scholar 

  • 31.

    Shipley, B. From Plant Traits to Vegetation Structure: Chance and Selection in the Assembly of Ecological Communities (Cambridge University Press, 2010).

  • 32.

    Feeley, K. J. & Silman, M. R. Biotic attrition from tropical forests correcting for truncated temperature niches. Glob. Change Biol. 16, 1830–1836 (2010).

    ADS 
    Article 

    Google Scholar 

  • 33.

    Parry, M. et al. Climate Change 2007 – Impacts, Adaptation, and Vulnerability: Contribution of Working Group II to the Fourth Assessment Report of the IPCC (Cambridge University Press, 2007).

  • 34.

    Foden, W. B. et al. Identifying the world’s most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals. PLoS One 8, e65427 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 35.

    Lachenaud, O., Stévart, T., Ikabanga, D., Ndjabounda, E. C. N. & Walters, G. The littoral forests of the Libreville area (Gabon) and their importance for conservation: description of a new endemic species (Rubiaceae). Plant Ecol. Evol. 146, 68–74 (2013).

    Article 

    Google Scholar 

  • 36.

    Aguirre-Gutiérrez, J. et al. Drier tropical forests are susceptible to functional changes in response to a long-term drought. Ecol. Lett. 22, 855–865 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 37.

    Claeys, F. et al. Climate change would lead to a sharp acceleration of Central African forests dynamics by the end of the century. Environ. Res. Lett. 14, 044002 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 38.

    McDowell, N. G. et al. Pervasive shifts in forest dynamics in a changing world. Science 368, eaaz9463 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 39.

    Zhou, L. et al. Widespread decline of Congo rainforest greenness in the past decade. Nature 509, 86–90 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 40.

    Purvis, A. Phylogenetic approaches to the study of extinction. Annu. Rev. Ecol. Evol. Syst. 39, 301–319 (2008).

    Article 

    Google Scholar 

  • 41.

    Yachi, S. & Loreau, M. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc. Natl Acad. Sci. USA 96, 1463–1468 (1999).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 42.

    Neves, D. M. et al. Evolutionary diversity in tropical tree communities peaks at intermediate precipitation. Sci. Rep. 10, 1188 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 43.

    Letcher, S. G. Phylogenetic structure of angiosperm communities during tropical forest succession. Proc. R. Soc. B 277, 97–104 (2010).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 44.

    Letouzey, R. Notice de la carte phytogéographique du Cameroun au 1:500000 (Institut de la Carte Internationale de la végétation Toulouse-France et Institut de la recherche agronomique (Herbier National) Yaoundé-Cameroun, 1985).

  • 45.

    Boulvert, Y. Carte phytogéographique de la République Centrafricaine (feuille oust–feuille est) à 1 000 000 (Editions de l’ORSTOM, 1986).

  • 46.

    Fyllas, N. M., Quesada, C. A. & Lloyd, J. Deriving plant functional types for Amazonian forests for use in vegetation dynamics models. Perspect. Plant Ecol. Evol. Syst. 14, 97–110 (2012).

    Article 

    Google Scholar 

  • 47.

    Mitchard, E. T. A. et al. Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites. Glob. Ecol. Biogeogr. 23, 935–946 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 48.

    Visconti, P., Pressey, R. L., Bode, M. & Segan, D. B. Habitat vulnerability in conservation planning—when it matters and how much. Conserv. Lett. 3, 404–414 (2010).

    Article 

    Google Scholar 

  • 49.

    Putz, F. E. et al. Sustaining conservation values in selectively logged tropical forests: the attained and the attainable. Conserv. Lett. 5, 296–303 (2012).

    Article 

    Google Scholar 

  • 50.

    Gourlet-Fleury, S. et al. Tropical forest recovery from logging: a 24 year silvicultural experiment from Central Africa. Phil. Trans. R. Soc. B 368, 20120302 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 51.

    Clark, C. J., Poulsen, J. R., Malonga, R. & Elkan, P. W. Jr. Logging concessions can extend the conservation estate for Central African tropical forests. Conserv. Biol. 23, 1281–1293 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 52.

    Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 53.

    Réjou-Méchain, M. et al. Detecting large-scale diversity patterns in tropical trees: can we trust commercial forest inventories? For. Ecol. Manage. 261, 187–194 (2011).

    Article 

    Google Scholar 

  • 54.

    African Plant Database v.3.4.0 (Conservatoire et Jardin Botaniques de la Ville de Genève and South African National Biodiversity Institute, Pretoria, accessed 10 February 2017).

  • 55.

    The Angiosperm Phylogeny Group. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot. J. Linn. Soc. 161, 105–121 (2009).

    Article 

    Google Scholar 

  • 56.

    Dauby, G. et al. RAINBIO: a mega-database of tropical African vascular plants distributions. PhytoKeys 74, 1–18 (2016).

    Article 

    Google Scholar 

  • 57.

    Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351–366 (2009).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 58.

    Zanne, A. E. et al. Data from: towards a worldwide wood economic spectrum. Dryad https://doi.org/10.5061/dryad.234 (2009).

  • 59.

    Gourlet-Fleury, S. et al. Environmental filtering of dense‐wooded species controls above‐ground biomass stored in African moist forests. J. Ecol. 99, 981–990 (2011).

    Article 

    Google Scholar 

  • 60.

    Westoby, M. & Wright, I. J. Land-plant ecology on the basis of functional traits. Trends Ecol. Evol. 21, 261–268 (2006).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 61.

    Chave, J. et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Change Biol. 20, 3177–3190 (2014).

    ADS 
    Article 

    Google Scholar 

  • 62.

    Bénédet, F. et al. CoForTraits, African plant traits information database v.1.0, https://doi.org/10.18167/DVN1/Y2BIZK (2013).

  • 63.

    Davies, T. J. et al. Phylogenetic conservatism in plant phenology. J. Ecol. 101, 1520–1530 (2013).

    Article 

    Google Scholar 

  • 64.

    Cramer, W. et al. Global response of terrestrial ecosystem structure and function to CO2 and climate change: Results from six dynamic global vegetation models. Glob. Change Biol. 7, 357–373 (2001).

    ADS 
    Article 

    Google Scholar 

  • 65.

    Menzel, A. Phenology: its importance to the global change community. Clim. Change 54, 379 (2002).

    Article 

    Google Scholar 

  • 66.

    Borchert, R., Rivera, G. & Hagnauer, W. Modification of vegetative phenology in a tropical semi-deciduous forest by abnormal drought and rain. Biotropica 34, 27–39 (2002).

    Article 

    Google Scholar 

  • 67.

    Kraft, N. J. B., Valencia, R. & Ackerly, D. D. Functional traits and niche-based tree community assembly in an Amazonian forest. Science 322, 580–582 (2008).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 68.

    Schamp, B. S. & Aarssen, L. W. The assembly of forest communities according to maximum species height along resource and disturbance gradients. Oikos 118, 564–572 (2009).

    Article 

    Google Scholar 

  • 69.

    New, M., Lister, D., Hulme, M. & Makin, I. A high-resolution data set of surface climate over global land areas. Clim. Res. 21, 1–25 (2002).

    Article 

    Google Scholar 

  • 70.

    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surface for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Article 

    Google Scholar 

  • 71.

    Funk, C. et al. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci. Data 2, 150066 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 72.

    Nachtergaele, F. et al. The harmonized world soil database. In Proc. 19th World Congress of Soil Science, Soil Solutions for a Changing World (eds Gilkes, R. & Prakongkep, N.) 34–37 (International Union of Soil Sciences, 2010).

  • 73.

    Woolmer, G. et al. Rescaling the human footprint: a tool for conservation planning at an ecoregional scale. Landsc. Urban Plan. 87, 42–53 (2008).

    Article 

    Google Scholar 

  • 74.

    Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 75.

    Geldmann, J., Joppa, L. N. & Burgess, N. D. Mapping change in human pressure globally on land and within protected areas. Conserv. Biol. 28, 1604–1616 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 76.

    Linard, C., Gilbert, M., Snow, R. W., Noor, A. M. & Tatem, A. J. Population distribution, settlement patterns and accessibility across Africa in 2010. PLoS One 7, e31743 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 77.

    Lloyd, C. T. et al. Global spatio-temporally harmonised datasets for producing high-resolution gridded population distribution datasets. Big Earth Data 3, 108–139 (2019).

    Google Scholar 

  • 78.

    Boulesteix, A.-L. & Strimmer, K. Partial least squares: a versatile tool for the analysis of high-dimensional genomic data. Brief. Bioinform. 8, 32–44 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 79.

    Carrascal, L. M., Galván, I. & Gordo, O. Partial least squares regression as an alternative to current regression methods used in ecology. Oikos 118, 681–690 (2009).

    Article 

    Google Scholar 

  • 80.

    Tenenhaus, M. La Régression PLS: Théorie et Pratique (Editions Technip, 1998).

  • 81.

    Sabatier, R., Lebreton, J. D. & Chessel, D. in Multiway Data Analysis (eds Coppi, R. & Bolasco, S.) 341–352 (1989).

  • 82.

    Ter Braak, C. J. F. in Theory and Models In Vegetation Science (eds Prentice, I. C. & van der Maarel, E.) 69–77 (Springer, 1987).

  • 83.

    Bry, X. & Verron, T. THEME: THEmatic model exploration through multiple co-structure maximization. J. Chemometr. 29, 637–647 (2015).

    CAS 
    Article 

    Google Scholar 

  • 84.

    Cornu, G., Mortier, F., Trottier, C. & Bry, X. SCGLR: supervised component generalized linear regression. R version 3.0 https://cran.r-project.org/web/packages/SCGLR/index.html (2016).

  • 85.

    Ward, J. H. Jr. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58, 236–244 (1963).

    MathSciNet 
    Article 

    Google Scholar 

  • 86.

    Ploton, P. et al. Spatial validation reveals poor predictive performance of large-scale ecological mapping models. Nat. Commun. 11, 4540 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 87.

    Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gGussian finite mixture models. R J. 8, 289–317 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 88.

    Dormann, C. F. et al. Methods to account for spatial autocorrelation in the analysis of species distributional data: A review. Ecography 30, 609–628 (2007).

    Article 

    Google Scholar 

  • 89.

    Renard, D. et al. RGeostats: the geostatistical package v.11.0. 1 http://rgeostats.free.fr/ (MINES ParisTech, 2014).

  • 90.

    Platts, P. J., Omeny, P. A. & Marchant, R. AFRICLIM: high-resolution climate projections for ecological applications in Africa. Afr. J. Ecol. 53, 103–108 (2015).

    Article 

    Google Scholar 

  • 91.

    Janssens, S. B. et al. A large-scale species level dated angiosperm phylogeny for evolutionary and ecological analyses. Biodivers. Data J. 8, e39677 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 92.

    Abouheif, E. A method for testing the assumption of phylogenetic independence in comparative data. Evol. Ecol. Res. 1, 895–909 (1999).

    Google Scholar 

  • 93.

    Chao, A., Chiu, C.-H. & Jost, L. Phylogenetic diversity measures based on Hill numbers. Phil. Trans. R. Soc. B 365, 3599–3609 (2010).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 94.

    R Core Team. R: a language and environment for statistical computing. (R Foundation for Statistical Computing, 2017).

  • 95.

    Chessel, D., Dufour, A. B. & Thioulouse, J. The ade4 package – I: one-table methods. R News 4, 5–10 (2004).

    Google Scholar 

  • 96.

    Lafarge, T. & Pateiro-Lopez, B. alphashape3d: implementation of the 3D alpha-shape for the reconstruction of 3D sets from a point cloud. R version 1.3.1 https://cran.r-project.org/web/packages/alphashape3d/index.html (2017).

  • 97.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).

  • 98.

    Hijmans, R. J. raster: geographic data analysis and modelling. R version 3.4-5 https://cran.r-project.org/web/packages/raster/index.html (2017).

  • 99.

    Marcon, E. & Hérault, B. entropart: An R package to measure and partition diversity. J. Stat. Softw. 67, 1–26 (2015).

    Google Scholar 

  • 100.

    Dufrêne, M. & Legendre, P. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monogr. 67, 345–366 (1997).

    Google Scholar 


  • Source: Ecology - nature.com

    Electrifying cement with nanocarbon black

    In-stream turbines for rethinking hydropower development in the Amazon basin