in

Updating salamander datasets with phenotypic and stomach content information for two mainland Speleomantes

  • 1.

    Lanza, B., Pastorelli, C., Laghi, P. & Cimmaruta, R. A review of systematics, taxonomy, genetics, biogeography and natural history of the genus Speleomantes Dubois, 1984 (Amphibia Caudata Plethodontidae). Atti Mus civ stor nat Trieste 52, 5–135 (2006).

    Google Scholar 

  • 2.

    Ficetola, G. F. et al. Differences between microhabitat and broad-scale patterns of niche evolution in terrestrial salamanders. Sci Rep 8, 10575, https://doi.org/10.1038/s41598-018-28796-x (2018).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 3.

    Lunghi, E., Manenti, R. & Ficetola, G. F. Seasonal variation in microhabitat of salamanders: environmental variation or shift of habitat selection? PeerJ 3, e1122, https://doi.org/10.7717/peerj.1122 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 4.

    Ficetola, G. F., Lunghi, E. & Manenti, R. Microhabitat analyses support relationships between niche breadth and range size when spatial autocorrelation is strong. Ecography 43, 1–11, https://doi.org/10.1111/ecog.04798 (2020).

    Article 

    Google Scholar 

  • 5.

    Culver, D. C. & Pipan, T. The biology of caves and other subterranean habitats 2nd edn (Oxford University Press, 2019).

  • 6.

    Bradley, J. G. & Eason, P. K. Predation risk and microhabitat selection by cave salamanders, Eurycea lucifuga (Rafinesque, 1822). Behaviour 155, 841–859, https://doi.org/10.1163/1568539X-00003505 (2019).

    Article 

    Google Scholar 

  • 7.

    Salvidio, S., Palumbi, G., Romano, A. & Costa, A. Safe caves and dangerous forests? Predation risk may contribute to salamander colonization of subterranean habitats. The Science of Nature 104, 20, https://doi.org/10.1007/s00114-017-1443-y (2017).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 8.

    Manenti, R., Melotto, A., Guillaume, O., Ficetola, G. F. & Lunghi, E. Switching from mesopredator to apex predator: how do responses vary in amphibians adapted to cave living? Behavioral Ecology and Sociobiology 74, 126, https://doi.org/10.1007/s00265-020-02909-x (2020).

    Article 

    Google Scholar 

  • 9.

    Lunghi, E. et al. Field-recorded data on the diet of six species of European Hydromantes cave salamanders. Sci Data 5, 180083, https://doi.org/10.1038/sdata.2018.83 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    Lunghi, E. & Bruni, G. Long-term reliability of Visual Implant Elastomers in the Italian cave salamander (Hydromantes italicus). Salamandra 54, 283–286 (2018).

    Google Scholar 

  • 11.

    Mace, G. M. & Lande, R. Assessing extinction threats: towards a reevaluation of IUCN threatened species categories. Conservation Biology 5, 148–157 (1991).

    Article 

    Google Scholar 

  • 12.

    Huey, R. B. et al. Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Philosophical Transaction of the Royal Society B 367, 1665–1679, https://doi.org/10.1098/rstb.2012.0005 (2012).

    Article 

    Google Scholar 

  • 13.

    Rondinini, C., Battistoni, A., Peronace, V. & Teofili, C. Lista Rossa IUCN dei Vertebrati Italiani. (Comitato Italiano IUCN e Ministero dell’Ambiente e della Tutela del Territorio e del Mare, 2013).

  • 14.

    European Community. Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Official Journal of the European Union L 206/7, 1–44 (1992).

    Google Scholar 

  • 15.

    Régnier, C. et al. Mass extinction in poorly known taxa. Proc Natl Acad Sci USA 112, 7761–7766, https://doi.org/10.1073/pnas.1502350112 (2015).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 16.

    Stuart, S. N. et al. Status and trends of amphibian declines and extinctions worldwide. Science 306, 1783–1786, https://doi.org/10.1126/science.1103538 (2004).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 17.

    Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol Lett 15, 365–377, https://doi.org/10.1111/j.1461-0248.2011.01736.x (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 18.

    Connette, G. M., Crawford, J. A. & Peterman, A. E. Climate change and shrinking salamanders: alternative mechanisms for changes in plethodontid salamander body size. Global Change Biology 21, 2834–2843, https://doi.org/10.1111/gcb.12883 (2015).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • 19.

    Heinrichs, J. A., Bender, D. J. & Schumaker, N. H. Habitat degradation and loss as key drivers of regional population extinction. Ecological Modelling 335, 64–73, https://doi.org/10.1016/j.ecolmodel.2016.05.009 (2016).

    Article 

    Google Scholar 

  • 20.

    Walters, R. J., Blanckenhorn, W. U. & Berger, D. Forecasting extinction risk of ectotherms under climate warming: an evolutionary perspective. Functional Ecology 26, 1324–1338, https://doi.org/10.1111/j.1365-2435.2012.02045.x (2012).

    Article 

    Google Scholar 

  • 21.

    Zhang, Z. et al. Future climate change will severely reduce habitat suitability of the Critically Endangered Chinese giant salamander. Freshwater Biology 65, 971–980, https://doi.org/10.1111/fwb.13483 (2020).

    Article 

    Google Scholar 

  • 22.

    Bland, L. M. Global correlates of extinction risk in freshwater crayfish. Animal Conservation 20, 532–542, https://doi.org/10.1111/acv.12350 (2017).

    Article 

    Google Scholar 

  • 23.

    Lunghi, E. et al. Photographic database of the European cave salamanders, genus Hydromantes. Sci Data 7, 171, https://doi.org/10.1038/s41597-020-0513-8 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Mammola, S. et al. Continental data on cave-dwelling spider communities across Europe (Arachnida: Araneae). Biodivers Data J 7, e38492, https://doi.org/10.3897/BDJ.7.e38492 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 25.

    MacNeil, R. R. & Brcic, J. Coping with the subterranean environment: a thematic content analysis of the narratives of cave explorers. J Hum Perform Environ 13, Article 6, https://doi.org/10.7771/2327-2937.1089 (2017).

    Article 

    Google Scholar 

  • 26.

    Zagmajster, M., Culver, D. C., Christman, M. C. & Sket, B. Evaluating the sampling bias in pattern of subterranean species richness: combining approaches. Biodivers Conserv 19, 3035–3048, https://doi.org/10.1007/s10531-010-9873-2 (2010).

    Article 

    Google Scholar 

  • 27.

    Mammola, S. et al. Collecting eco-evolutionary data in the dark: Impediments to subterranean research and how to overcome them. Ecology and Evolution, https://doi.org/10.1002/ece3.7556 (2021).

  • 28.

    Brown, A. W., Kaiser, K. A. & Allison, D. B. Issues with data and analyses: errors, underlying themes, and potential solutions. Proc Natl Acad Sci USA 115, 2563–2570, https://doi.org/10.1073/pnas.1708279115 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 29.

    Crovetto, F., Romano, A. & Salvidio, S. Comparison of two non-lethal methods for dietary studies in terrestrial salamanders. Wildlife Research 39, 266–270, https://doi.org/10.1071/WR11103 (2012).

    Article 

    Google Scholar 

  • 30.

    Lunghi, E. & Veith, M. Are Visual Implant Alpha tags adequate for individually marking European cave salamanders (genus Hydromantes)? Salamandra 53, 541–544 (2017).

    Google Scholar 

  • 31.

    Swanson, J. E., Bailey, L. L., Muths, E. & Funk, W. C. Factors influencing survival and mark retention in postmetamorphic Boreal chorus frogs. Copeia 2013, 670–675, https://doi.org/10.1643/CH-12-129 (2013).

    Article 

    Google Scholar 

  • 32.

    Sacchi, R. et al. Photographic identification in reptiles: a matter of scales. Amphibia-Reptilia 31, 489–502 (2010).

    Article 

    Google Scholar 

  • 33.

    Lunghi, E. et al. On the stability of the dorsal pattern of European cave salamanders (genus Hydromantes). Herpetozoa 32, 249–253, https://doi.org/10.3897/herpetozoa.32.e39030 (2019).

    Article 

    Google Scholar 

  • 34.

    Lunghi, E. et al. What shapes the trophic niche of European plethodontid salamanders? PLoS ONE 13, e0205672, https://doi.org/10.1371/journal.pone.0205672 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 35.

    Lunghi, E. et al. The post hoc measurement as a safe and reliable method to age and size plethodontid salamanders. Ecology and Evolution 10, 11111–11116, https://doi.org/10.1002/ece3.6748 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 36.

    Hedrick, B. P. et al. Digitization and the future of natural history collections. BioScience 70, 243–251, https://doi.org/10.1093/biosci/biz163 (2020).

    Article 

    Google Scholar 

  • 37.

    Nelson, G. & Ellis, S. The history and impact of digitization and digital data mobilization on biodiversity research. Philosophical Transactions of the Royal Society B 374, 20170391, https://doi.org/10.1098/rstb.2017.0391 (2019).

    Article 

    Google Scholar 

  • 38.

    Lunghi, E. et al. Interspecific and inter-population variation in individual diet specialization: do environmental factors have a role? Ecology 101, e03088, https://doi.org/10.1002/ecy.3088 (2020).

    Article 
    PubMed 

    Google Scholar 

  • 39.

    Salvidio, S., Romano, A., Oneto, F., Ottonello, D. & Michelon, R. Different season, different strategies: feeding ecology of two syntopic forest-dwelling salamanders. Acta Oecol 43, 42–50 (2012).

    ADS 
    Article 

    Google Scholar 

  • 40.

    Rosenblatt, A. E. et al. Factors affecting individual foraging specialization and temporal diet stability across the range of a large “generalist” apex predator. Oecologia 178, 5–16, https://doi.org/10.1007/s00442-014-3201-6 (2015).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • 41.

    Lunghi, E. et al. Same diet, different strategies: variability of individual feeding habits across three populations of Ambrosi’s cave salamander (Hydromantes ambrosii). Diversity 12, 180, https://doi.org/10.3390/d12050180 (2020).

    Article 

    Google Scholar 

  • 42.

    Lunghi, E., Manenti, R. & Ficetola, G. F. Do cave features affect underground habitat exploitation by non-troglobite species? Acta Oecol 55, 29–35, https://doi.org/10.1016/j.actao.2013.11.003 (2014).

    ADS 
    Article 

    Google Scholar 

  • 43.

    Lunghi, E. et al. Cave morphology, microclimate and abundance of five cave predators from the Monte Albo (Sardinia, Italy). Biodivers Data J 8, e48623, https://doi.org/10.3897/BDJ.8.e48623 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Carvalho-Rocha, V., Cortês, L. B. & Neckel-Oliveira, S. Interindividual patterns of resource use in three subtropical Atlantic Forest frogs. Austral Ecology 43, 150–158, https://doi.org/10.1111/aec.12552 (2018).

    Article 

    Google Scholar 

  • 45.

    Lunghi, E. et al. Photos and stomach contents of two mainland Italian Speleomantes salamanders: data from summer 2020. figshare https://doi.org/10.6084/m9.figshare.c.5398368 (2021).

  • 46.

    Martel, A. et al. Batrachochytrium salamandrivorans sp. nov. causes lethal chytridiomycosis in amphibians. Proc Natl Acad Sci USA 110, 15325–15329, https://doi.org/10.1073/pnas.1307356110 (2012).

    ADS 
    Article 

    Google Scholar 

  • 47.

    Treilibs, C. E., Pavey, C. R., Hutchinson, M. N. & Bull, C. M. Photographic identification of individuals of a free-ranging, small terrestrial vertebrate. Ecology and Evolution 6, 800–809, https://doi.org/10.1002/ece3.1883 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 48.

    Town, C., Marshall, A. & Sethasathien, N. Manta Matcher: automated photographic identification of manta rays using keypoint features. Ecology and Evolution 3, 1902–1914, https://doi.org/10.1002/ece3.587 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 49.

    MacCoun, R. & Perlmutter, S. Hide results to seek the truth. Nature 526, 187–189, https://doi.org/10.1038/526187a (2015).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 50.

    Lunghi, E. et al. Thermal equilibrium and temperature differences among body regions in European plethodontid salamanders. J Therm Biol 60, 79–85, https://doi.org/10.1016/j.jtherbio.2016.06.010 (2016).

    Article 
    PubMed 

    Google Scholar 

  • 51.

    Weller, H. I. & Westneat, M. W. Quantitative color profiling of digital images with earth mover’s distance using the R package colordistance. PeerJ 7, e6398, https://doi.org/10.7717/peerj.6398 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 52.

    Adams, D., Collyer, M. & Kaliontzopoulou, A. geomorph. Geometric Morphometric Analyses of 2D/3D Landmark Data. R package version 3.2.1, https://github.com/geomorphR/geomorph (2020).

  • 53.

    Bendik, N. F., Morrison, T. A., Gluesenkamp, A. G., Sanders, M. S. & O’Donnell, L. J. Computer-assisted photo identification outperforms visible implant elastomers in an endangered salamander, Eurycea tonkawae. PLoS ONE 8, e59424, https://doi.org/10.1371/journal.pone.0059424 (2013).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    Renet, J., Leprêtre, L., Champagnon, J. & Lambret, P. Monitoring amphibian species with complex chromatophore patterns: a non-invasive approach with an evaluation of software effectiveness and reliability. Herpetological Journal 29, 13–22, https://doi.org/10.33256/hj29.1.1322 (2019).

    Article 

    Google Scholar 

  • 55.

    Allen-Blevins, C. R., You, X., Hinde, K. & Sela, D. A. Handling stress may confound murine gut microbiota studies. PeerJ 5, e2876, https://doi.org/10.7717/peerj.2876 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 56.

    Samimi, A. S., Tajik, J., Jarakani, S. & Shojaeepour, S. Evaluation of a five-minute resting period following handling stress on electrocardiogram parameters and cardiac rhythm in sheep. Veterinary Science Development 6, 6481, https://doi.org/10.4081/vsd.2016.6481 (2016).

    Article 

    Google Scholar 

  • 57.

    Martel, A. et al. Recent introduction of a chytrid fungus endangers Western Palearctic salamanders. Science 346, 630, https://doi.org/10.1126/science.1258268 (2014).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 58.

    Lunghi, E., Corti, C., Manenti, R. & Ficetola, G. F. Consider species specialism when publishing datasets. Nat Ecol Evol 3, 319, https://doi.org/10.1038/s41559-019-0803-8 (2019).

    Article 
    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    MIT J-WAFS awards eight grants in seventh round of seed funding

    Non-uniform tropical forest responses to the ‘Columbian Exchange’ in the Neotropics and Asia-Pacific