in

Upper limits to sustainable organic wheat yields

  • 1.

    Goulding, K., Trewavas, A. & Giller, K. E. Feeding the world: a contribution to the debate. World Agric. 2, 32–38 (2011).

    Google Scholar 

  • 2.

    Muller, A. et al. Strategies for feeding the world more sustainably with organic agriculture. Nat. Commun. 8, 1–13 (2017).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Epule, T. E. Organic Farming 1–16 (Elsevier, 2019).

    Book 

    Google Scholar 

  • 4.

    FAO. FAO Statistical Pocketbook 2015: World Food and Agriculture. Food and Agriculture Organization; ISBN 978-92-5-108802-9. http://www.fao.org/documents/card/en/c/383d384a-28e6-47b3-a1a2-2496a9e017b2/. Accessed 30 November 2016, 2015.

  • 5.

    Willett, W. et al. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. The Lancet 393, 447–492 (2019).

    Article 

    Google Scholar 

  • 6.

    Hazell, P. & Wood, S. Drivers of change in global agriculture. Philos. Trans. R. Soc. B Biol. Sci. 363, 495–515 (2008).

    Article 

    Google Scholar 

  • 7.

    Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. Agricultural sustainability and intensive production practices. Nature 418, 671–677 (2002).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 8.

    Ladha, J. et al. Global nitrogen budgets in cereals: A 50-year assessment for maize, rice, and wheat production systems. Sci. Rep. 6, 19355 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 9.

    de Ponti, T., Rijk, B. & Van Ittersum, M. K. The crop yield gap between organic and conventional agriculture. Agric. Syst. 108, 1–9 (2012).

    Article 

    Google Scholar 

  • 10.

    Seufert, V., Ramankutty, N. & Foley, J. A. Comparing the yields of organic and conventional agriculture. Nature 485, 229–232 (2012).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 11.

    Ponisio, L. C. et al. Diversification practices reduce organic to conventional yield gap. Proc. R. Soc. Lond. B Biol. Sci. 282, 20141396 (2015).

    Google Scholar 

  • 12.

    Connor, D. J. Organically grown crops do not a cropping system make and nor can organic agriculture nearly feed the world. Field Crops Res. 144, 145–147. https://doi.org/10.1016/j.fcr.2012.12.013 (2013).

    Article 

    Google Scholar 

  • 13.

    Berry, P. M. et al. Is the productivity of organic farms restricted by the supply of available nitrogen?. Soil Use Manag. 18, 248–255 (2002).

    Article 

    Google Scholar 

  • 14.

    Adamtey, N. et al. Productivity, profitability and partial nutrient balance in maize-based conventional and organic farming systems in Kenya. Agric. Ecosyst. Environ. 235, 61–79 (2016).

    Article 

    Google Scholar 

  • 15.

    Poudel, D., Horwath, W., Lanini, W., Temple, S. & Van Bruggen, A. Comparison of soil N availability and leaching potential, crop yields and weeds in organic, low-input and conventional farming systems in northern California. Agric. Ecosyst. Environ. 90, 125–137 (2002).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Kravchenko, A. N., Snapp, S. S. & Robertson, G. P. Field-scale experiments reveal persistent yield gaps in low-input and organic cropping systems. Proc. Nat. Acad. Sci. 114, 926–931 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 17.

    Tittonell, P. & Giller, K. E. When yield gaps are poverty traps: the paradigm of ecological intensification in African smallholder agriculture. Field Crops Res. 143, 76–90 (2013).

    Article 

    Google Scholar 

  • 18.

    David, C., Jeuffroy, M., Henning, J. & Meynard, J. Yield variation in organic winter wheat: a diagnostic study in the Southeast of France. Agron. Sust. Dev. 25, 213 (2005).

    Article 

    Google Scholar 

  • 19.

    Köpke, U. Nutrient management in organic farming systems—The Case of Nitrogen. Biol. Agr. Hort. 11, 15–29 (1995).

    Article 

    Google Scholar 

  • 20.

    Watson, C. A., Atkinson, D., Gosling, P., Jackson, L. R. & Rayns, F. W. Managing soil fertility in organic farming systems. Soil Use Manag. 18, 239–247 (2002).

    Article 

    Google Scholar 

  • 21.

    Watson, C. et al. A review of farm-scale nutrient budgets for organic farms as a tool for management of soil fertility. Soil Use Manag. 18, 264–273 (2002).

    Article 

    Google Scholar 

  • 22.

    Nimmo, J., Lynch, D. & Owen, J. Quantification of nitrogen inputs from biological nitrogen fixation to whole farm nitrogen budgets of two dairy farms in Atlantic Canada. Nutr. Cycl. Agroecosyst. 96, 93–105 (2013).

    Article 

    Google Scholar 

  • 23.

    Van Kessel, C. & Hartley, C. Agricultural management of grain legumes: has it led to an increase in nitrogen fixation?. Field Crops Res. 65, 165–181 (2000).

    Article 

    Google Scholar 

  • 24.

    Herridge, D. F., Peoples, M. B. & Boddey, R. M. Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311, 1–18 (2008).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Smith, O. M. et al. Organic farming provides reliable environmental benefits but increases variability in crop yields: A global meta-analysis. Front. Sustain. Food Syst. 3, 82 (2019).

    Article 

    Google Scholar 

  • 26.

    Becker, M., Ali, M., Ladha, J. & Ottow, J. Agronomic and economic evaluation of Sesbania rostrata green manure establishment in irrigated rice. Field Crops Res. 40, 135–141 (1995).

    Article 

    Google Scholar 

  • 27.

    Ventura, W. & Watanabe, I. Green manure production of Azolla microphylla and Sesbania rostrata and their long-term effects on rice yields and soil fertility. Biol. Fert. Soils 15, 241–248 (1993).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Bussink, D. & Oenema, O. Ammonia volatilization from dairy farming systems in temperate areas: a review. Nutr. Cycl. Agroecosyst. 51, 19–33 (1998).

    Article 

    Google Scholar 

  • 29.

    Fillery, I. The fate of biologically fixed nitrogen in legume-based dryland farming systems: a review. Anim. Prod. Sci. 41, 361–381 (2001).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Oenema, O., Witzke, H., Klimont, Z., Lesschen, J. & Velthof, G. Integrated assessment of promising measures to decrease nitrogen losses from agriculture in EU-27. Agric. Ecosyst. Environ. 133, 280–288 (2009).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Graham, P. H. & Vance, C. P. Legumes: Importance and constraints to greater use. Plant Physiol. 131, 872–877 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 32.

    Cassman, K., Whitney, A. & Stockinger, K. Root growth and dry matter distribution of soybean as affected by phosphorus stress, nodulation, and nitrogen source. Crop Sci. 20, 239–244 (1980).

    CAS 
    Article 

    Google Scholar 

  • 33.

    Gunawardena, S., Danso, S. & Zapata, F. Phosphorus requirement and sources of nitrogen in three soybean (Glycine max) genotypes, Bragg, nts 382 and Chippewa. Plant Soil 151, 1–9 (1993).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Scherer, H., Pacyna, S., Manthey, N. & Schulz, M. Sulphur supply to peas (Pisum sativum L.) influences symbiotic N2 fixation. Plant Soil Environ. 52, 72–77 (2006).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Anderson, A. & Spencer, D. Molybdenum in nitrogen metabolism of legumes and non-legumes. Aust. J. Sci. Res. 3, 414–430 (1950).

    CAS 

    Google Scholar 

  • 36.

    Fuchs, J. G. et al. Evaluation of the causes of legume yield depression syndrome using an improved diagnostic tool. Appl. Soil Ecol. 79, 26–36 (2014).

    Article 

    Google Scholar 

  • 37.

    Cassmann, K. G., Dobermann, A. & Walters, D. T. Agroecosystems, nitrogen use efficiency and nitrogen management. J. Human Environ. 31, 132–140 (2002).

    Article 

    Google Scholar 

  • 38.

    Kramer, A. W., Doane, T. A., Horwath, W. R. & van Kessel, C. Combining fertilizer and organic inputs to synchronize N supply in alternative cropping systems in California. Agric. Ecosyst. Envir. 91, 233–243 (2002).

    Article 

    Google Scholar 

  • 39.

    Oerke, E.-C. Crop losses to pests. J. Agric. Sci. 144, 31–43 (2006).

    Article 

    Google Scholar 

  • 40.

    van Bruggen, A. H. C. Plant disease severity in high-input compared to reduced-input and organic farming systems. Plant Dis. 79, 976–984 (1995).

    Article 

    Google Scholar 

  • 41.

    Zehnder, G. et al. Arthropod pest management in organic crops. Annu. Rev. Entomol. 52, 57–80 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 42.

    Bond, W. & Grundy, A. C. Non-chemical weed management in organic farming systems. Weed Res. 41, 383–405 (2001).

    Article 

    Google Scholar 

  • 43.

    Bouwman, A. F., Beusen, A. H. W. & Billen, G. Human alteration of the global nitrogen and phosphorus soil balances for the period 1970–2050. Glob. Biogeochem. Cycl. 23, 99. https://doi.org/10.1029/2009GB003576 (2009).

    CAS 
    Article 

    Google Scholar 

  • 44.

    Lu, C. C. & Tian, H. Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: shifted hot spots and nutrient imbalance. Earth System Sci. Data 9, 181 (2017).

    Article 
    ADS 

    Google Scholar 

  • 45.

    Smil, V. Nitrogen in crop production: An account of global flows. Glob. Biogeochem. Cycl. 13, 647–662 (1999).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 46.

    Crews, T. & Peoples, M. Legume versus fertilizer sources of nitrogen: ecological tradeoffs and human needs. Agric. Ecosyst. Envir. 102, 279–297 (2004).

    Article 

    Google Scholar 

  • 47.

    Köpke, U. & Nemecek, T. Ecological services of faba bean. Field Crops Res. 115, 217–233. https://doi.org/10.1016/j.fcr.2009.10.012 (2010).

    Article 

    Google Scholar 

  • 48.

    Vance, C. P. Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources. Plant Physiol. 127, 390–397 (2001).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 49.

    Peterson, T. A. & Russelle, M. P. Alfalfa and the nitrogen cycle in the Corn Belt. J. Soil Water Conserv. 46, 229–235 (1991).

    Google Scholar 

  • 50.

    Peoples, M., Herridge, D. & Ladha, J. Biological nitrogen fixation: an efficient source of nitrogen for sustainable agricultural production?. Plant Soil 174, 3–28 (1995).

    CAS 
    Article 

    Google Scholar 

  • 51.

    Sanchez, P. A. Soil fertility and hunger in Africa. Science 295, 2019–2020 (2002).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 52.

    Hole, D. G. et al. Does organic farming benefit biodiversity?. Biol. Cons. 122, 113–130 (2005).

    Article 

    Google Scholar 

  • 53.

    Mäder, P. et al. Soil fertility and biodiversity in organic farming. Science 296, 1694–1697 (2002).

    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 

  • 54.

    Banerjee, S. et al. Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. ISME J. 13, 1722–1736 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 55.

    Kijlstra, A. & Eijck, I. Animal health in organic livestock production systems: A review. NJAS-Wagen. J. Life Sci. 54, 77–94 (2006).

    Article 

    Google Scholar 

  • 56.

    Kramer, S. B., Reganold, J. P., Glover, J. D., Bohannan, B. J. M. & Mooney, H. A. Reduced nitrate leaching and enhanced denitrifier activity and efficiency in organically fertilized soils. PNAS 103, 4522–4527 (2006).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 57.

    Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 58.

    Brussaard, L. et al. Reconciling biodiversity conservation and food security: scientific challenges for a new agriculture. Curr. Opin. Environ. Sust. 2, 34–42 (2010).

    Article 

    Google Scholar 

  • 59.

    Pretty, J. Agricultural sustainability: concepts, principles and evidence. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 447–465 (2008).

    PubMed 
    Article 

    Google Scholar 

  • 60.

    Tilman, D. & Clark, M. Global diets link environmental sustainability and human health. Nature 515, 518–522 (2014).

    CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 

  • 61.

    Haas, G., Wetterich, F. & Kopke, U. Comparing intensive, extensified and organic grassland farming in southern Germany by process life cycle assessment. Agric. Ecosyst. Envir. 83, 43–53 (2001).

    Article 

    Google Scholar 

  • 62.

    Stevens, C. J. et al. Nitrogen deposition threatens species richness of grasslands across Europe. Environ. Pollut. 158, 2940–2945. https://doi.org/10.1016/j.envpol.2010.06.006 (2010).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Diving into the global problem of technology waste

    Imagining the distant past — and finding keys to the future