in

Upward expansion and acceleration of forest clearance in the mountains of Southeast Asia

  • 1.

    Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).

    CAS 
    Article 

    Google Scholar 

  • 2.

    Saatchi, S. S. et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl Acad. Sci. USA 108, 9899–9904 (2011).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Veldkamp, E., Schmidt, M., Powers, J. S. & Corre, M. D. Deforestation and reforestation impacts on soils in the tropics. Nat. Rev. Earth Environ. 1, 590–605 (2020).

    Article 

    Google Scholar 

  • 4.

    Ceccherini, G. et al. Abrupt increase in harvested forest area over Europe after 2015. Nature 583, 72–77 (2020).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Mitchard, E. T. A. The tropical forest carbon cycle and climate change. Nature 559, 527–534 (2018).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Curran, L. M. et al. Lowland forest loss in protected areas of Indonesian Borneo. Science 303, 1000–1003 (2004).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Friedl, A. et al. MODIS Collection 5 Global Land Cover: Algorithm Refinements and Characterization of New Datasets, 2001–2012 Collection 5.1 (Boston University, 2010).

  • 8.

    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Margono, B. A., Potapov, P. V., Turubanova, S., Stolle, F. & Hansen, M. C. Primary forest cover loss in Indonesia over 2000–2012. Nat. Clim. Change 4, 730–735 (2014).

    Article 

    Google Scholar 

  • 10.

    Turubanova, S. et al. Ongoing primary forest loss in Brazil, Democratic Republic of the Congo, and Indonesia. Environ. Res. Lett. 13, 074028 (2018).

    Article 

    Google Scholar 

  • 11.

    Searchinger, T. et al. Creating a Sustainable Food Future: A Menu of Solutions to Feed Nearly 10 Billion People by 2050 (World Resources Institute, 2019).

  • 12.

    Gibbs, H. K. et al. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc. Natl Acad. Sci. USA 107, 16732–16737 (2010).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Tyukavina, A. et al. Congo Basin forest loss dominated by increasing smallholder clearing. Sci. Adv. 4, eaat2993 (2018).

    Article 

    Google Scholar 

  • 14.

    Achard, F. et al. Determination of tropical deforestation rates and related carbon losses from 1990 to 2010. Glob. Change Biol. 20, 2540–2554 (2014).

    Article 

    Google Scholar 

  • 15.

    Baccini, A. et al. Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science 358, 230–234 (2017).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Aide, T. M. et al. Woody vegetation dynamics in the tropical and subtropical Andes from 2001 to 2014: satellite image interpretation and expert validation. Glob. Change Biol. 25, 2112–2126 (2019).

    Article 

    Google Scholar 

  • 17.

    Song, X. P. et al. Global land change from 1982 to 2016. Nature 560, 639–643 (2018).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Körner, C. et al. A global inventory of mountains for bio-geographical applications. Alp. Bot. 127, 1–15 (2017).

    Article 

    Google Scholar 

  • 19.

    Zeng, Z. et al. Highland cropland expansion and forest loss in Southeast Asia in the twenty-first century. Nat. Geosci. 11, 556–562 (2018).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Zeng, Z., Gower, D. B. & Wood, E. F. Accelerating forest loss in Southeast Asian Massif in the 21st century: a case study in Nan Province, Thailand. Glob. Change Biol. 24, 4682–4695 (2018).

    Article 

    Google Scholar 

  • 21.

    Zarin, D. J. et al. Can carbon emissions from tropical deforestation drop by 50% in 5 years? Glob. Change Biol. 22, 1336–1347 (2016).

    Article 

    Google Scholar 

  • 22.

    Spracklen, D. & Righelato, R. Tropical montane forests are a larger than expected global carbon store. Biogeosciences 11, 2741–2754 (2014).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Miettinen, J., Shi, C. & Liew, S. C. Deforestation rates in insular Southeast Asia between 2000 and 2010. Glob. Change Biol. 17, 2261–2270 (2011).

    Article 

    Google Scholar 

  • 24.

    Austin, K. G. et al. What causes deforestation in Indonesia? Environ. Res. Lett. 14, 024007 (2019).

    Article 

    Google Scholar 

  • 25.

    Hansen, M. et al. Response to comment on ‘high-resolution global maps of 21st-century forest cover change’. Science 344, 981–981 (2014).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Chan, N., Xayvongsa, L. & Takeda, S. in Environmental Resources Use and Challenges in Contemporary Southeast Asia (eds Lopez, M. I. & Suryomenggolo, J.) 231–246 (Springer, 2018).

  • 27.

    Thompson, J. R., Carpenter, D. N., Cogbill, C. V. & Foster, D. R. Four centuries of change in northeastern United States forests. PLoS ONE 8, e72540 (2013).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Lawrence, D. & Vandecar, K. Effects of tropical deforestation on climate and agriculture. Nat. Clim. Change 5, 27–36 (2015).

    Article 

    Google Scholar 

  • 29.

    Zeng, Z. et al. Deforestation-induced warming over tropical mountain regions regulated by elevation. Nat. Geosci. 14, 23–29 (2021).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Senior, R. A., Hill, J. K., Benedick, S. & Edwards, D. P. Tropical forests are thermally buffered despite intensive selective logging. Glob. Change Biol. 24, 1267–1278 (2018).

    Article 

    Google Scholar 

  • 31.

    Senior, R. A., Hill, J. K., González del Pliego, P., Goode, L. K. & Edwards, D. P. A pantropical analysis of the impacts of forest degradation and conversion on local temperature. Ecol. Evol. 7, 7897–7908 (2017).

    Article 

    Google Scholar 

  • 32.

    Sodhi, N. S. et al. The state and conservation of Southeast Asian biodiversity. Biodivers. Conserv. 19, 317–328 (2010).

    Article 

    Google Scholar 

  • 33.

    Ahrends, A. et al. Current trends of rubber plantation expansion may threaten biodiversity and livelihoods. Glob. Environ. Change 34, 48–58 (2015).

    Article 

    Google Scholar 

  • 34.

    Edwards, D. P. et al. Degraded lands worth protecting: the biological importance of Southeast Asia’s repeatedly logged forests. Proc. R. Soc. B 278, 82–90 (2011).

    Article 

    Google Scholar 

  • 35.

    Srinivasan, U., Elsen, P. R. & Wilcove, D. S. Annual temperature variation influences the vulnerability of montane bird communities to land-use change. Ecography 42, 2084–2094 (2019).

    Article 

    Google Scholar 

  • 36.

    Rahbek, C. et al. Humboldt’s enigma: what causes global patterns of mountain biodiversity? Science 365, 1108–1113 (2019).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Guo, F., Lenoir, J. & Bonebrake, T. C. Land-use change interacts with climate to determine elevational species redistribution. Nat. Commun. 9, 1315 (2018).

    Article 
    CAS 

    Google Scholar 

  • 38.

    Elsen, P. R., Monahan, W. B. & Merenlender, A. M. Topography and human pressure in mountain ranges alter expected species responses to climate change. Nat. Commun. 11, 1974 (2020).

    CAS 
    Article 

    Google Scholar 

  • 39.

    Spracklen, D. V., Arnold, S. R. & Taylor, C. M. Observations of increased tropical rainfall preceded by air passage over forests. Nature 489, 282–285 (2012).

    CAS 
    Article 

    Google Scholar 

  • 40.

    Spracklen, D. V. & Garcia-Carreras, L. The impact of Amazonian deforestation on Amazon Basin rainfall. Geophys. Res. Lett. 42, 9546–9552 (2015).

    Article 

    Google Scholar 

  • 41.

    Cheng, L. et al. Quantifying the impacts of vegetation changes on catchment storage–discharge dynamics using paired-catchment data. Water Resour. Res. 53, 5963–5979 (2017).

    Article 

    Google Scholar 

  • 42.

    Chappell, A., Baldock, J. & Sanderman, J. The global significance of omitting soil erosion from soil organic carbon cycling schemes. Nat. Clim. Change 6, 187–191 (2015).

    Article 
    CAS 

    Google Scholar 

  • 43.

    Yue, Y. et al. Lateral transport of soil carbon and land–atmosphere CO2 flux induced by water erosion in China. Proc. Natl Acad. Sci. USA 113, 6617–6622 (2016).

    CAS 
    Article 

    Google Scholar 

  • 44.

    Ziegler, A. D. et al. Carbon outcomes of major land-cover transitions in SE Asia: great uncertainties and REDD+ policy implications. Glob. Change Biol. 18, 3087–3099 (2012).

    Article 

    Google Scholar 

  • 45.

    Brinck, K. et al. High resolution analysis of tropical forest fragmentation and its impact on the global carbon cycle. Nat. Commun. 8, 14855 (2017).

    CAS 
    Article 

    Google Scholar 

  • 46.

    Fox, J., Castella, J. C. & Ziegler, A. D. Swidden, rubber and carbon: can REDD+ work for people and the environment in montane mainland Southeast Asia? Glob. Environ. Change 29, 318–326 (2014).

    Article 

    Google Scholar 

  • 47.

    Harris, N. L. et al. Global maps of twenty-first century forest carbon fluxes. Nat. Clim. Change https://doi.org/10.1038/s41558-020-00976-6 (2021).

  • 48.

    Tachikawa, T., Hato, M., Kaku, M. & Iwasaki, A. Characteristics of ASTER GDEM version 2. In Proc. IEEE International Geoscience and Remote Sensing Symposium (IGARSS) 3657–3660 (IEEE, 2011).

  • 49.

    Burrough, P. A., McDonnell, R., McDonnell, R. A. & Lloyd, C. D. Principles of Geographical Information Systems (Oxford Univ. Press, 2015).

  • 50.

    Mokany, K., Raison, R. J. & Prokushkin, A. S. Critical analysis of root : shoot ratios in terrestrial biomes. Glob. Change Biol. 12, 84–96 (2006).

    Article 

    Google Scholar 

  • 51.

    Tyukavina, A. et al. Aboveground carbon loss in natural and managed tropical forests from 2000 to 2012. Environ. Res. Lett. 10, 074002 (2015).

    Article 
    CAS 

    Google Scholar 

  • 52.

    Ryan, S. E. & Porth, L. S. A Tutorial on the Piecewise Regression Approach Applied to Bedload Transport Data (CreateSpace, 2015).

  • 53.

    Toms, J. D. & Lesperance, M. L. Piecewise regression: a tool for identifying ecological thresholds. Ecology 84, 2034–2041 (2003).

    Article 

    Google Scholar 

  • 54.

    Zeng, Z. et al. A reversal in global terrestrial stilling and its implications for wind energy production. Nat. Clim. Change 9, 979–985 (2019).

    Article 

    Google Scholar 

  • 55.

    Zaiontz, C. Real Statistics Using Excel (accessed 16 June 2021); http://www.real-statistics.com/


  • Source: Ecology - nature.com

    Engineered yeast could expand biofuels’ reach

    Insights into rumen microbial biosynthetic gene cluster diversity through genome-resolved metagenomics