in

Urbanization favors the proliferation of Aedes aegypti and Culex quinquefasciatus in urban areas of Miami-Dade County, Florida

  • 1.

    World Health Organization. Vector-borne diseases. Available at: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue (2020).

  • 2.

    Wilke, A. B. B., Beier, J. C. & Benelli, G. Complexity of the relationship between global warming and urbanization—an obscure future for predicting increases in vector-borne infectious diseases. Curr. Opin. Insect Sci. 35, 1–9 (2019).

    PubMed 

    Google Scholar 

  • 3.

    Wilke, A. B. B. et al. Proliferation of Aedes aegypti in urban environments mediated by the availability of key aquatic habitats. Sci. Rep. 10, 12925 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 4.

    Wilke, A. B. B., Wilk-da-Silva, R. & Marrelli, M. T. Microgeographic population structuring of Aedes aegypti (Diptera: Culicidae). PLoS ONE 12, e0185150 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 5.

    Gubler, D. J. Dengue, urbanization and globalization: The unholy trinity of the 21st Century. Trop. Med. Health 39, S3–S11 (2011).

    Google Scholar 

  • 6.

    Johnson, M. T. J. & Munshi-South, J. Evolution of life in urban environments. Science 358, 8327 (2017).

    Google Scholar 

  • 7.

    Zohdy, S., Schwartz, T. S. & Oaks, J. R. The coevolution effect as a driver of spillover. Trends Parasitol. 35, 399–408 (2019).

    PubMed 

    Google Scholar 

  • 8.

    Rochlin, I., Faraji, A., Ninivaggi, D. V., Barker, C. M. & Kilpatrick, A. M. Anthropogenic impacts on mosquito populations in North America over the past century. Nat. Commun. 7, 13604 (2016).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 9.

    Wilke, A. B. B. et al. Community composition and year-round abundance of vector species of mosquitoes make Miami-Dade County, Florida a receptive gateway for arbovirus entry to the United States. Sci. Rep. 9, 8732 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    Burkett-Cadena, N. D. & Vittor, A. Y. Deforestation and vector-borne disease: Forest conversion favors important mosquito vectors of human pathogens. Basic Appl. Ecol. 26, 101–110 (2018).

    PubMed 

    Google Scholar 

  • 11.

    Rochlin, I., Harding, K., Ginsberg, H. S. & Campbell, S. R. Comparative analysis of distribution and abundance of West Nile and eastern equine encephalomyelitis virus vectors in Suffolk County, New York, using human population density and land use/cover data. J. Med. Entomol. 45, 563–571 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 12.

    Monaghan, A. J. et al. Consensus and uncertainty in the geographic range of Aedes aegypti and Aedes albopictus in the contiguous United States: Multi-model assessment and synthesis. PLoS Comput. Biol. 15, 1–19 (2019).

    Google Scholar 

  • 13.

    Wilke, A. B. B., Benelli, G. & Beier, J. C. Beyond frontiers: On invasive alien mosquito species in America and Europe. PLoS Negl. Trop. Dis. 14, e0007864 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    Kraemer, M. U. G. et al. The global compendium of Aedes aegypti and Ae. albopictus occurrence. Sci. Data 2, 150035 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Dirzo, R. et al. Defaunation in the anthropocene. Science 345, 401–406 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 16.

    Lewis, S. L. & Maslin, M. A. Defining the anthropocene. Nature 519, 171–180 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 17.

    Law, K. L. & Thompson, R. C. Microplastics in the seas. Science 345, 144–145 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 18.

    Jambeck, J. R. et al. Plastic waste inputs from land into the ocean. Science 347, 768–771 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 19.

    Turner, W. R., Oppenheimer, M. & Wilcove, D. S. A force to fight global warming. Nature 462, 278–279 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 20.

    United Nations. World population prospects 2019. Department of Economic and Social Affairs. World Population Prospects 2019. (2019).

  • 21.

    Multini, L. C., de Souza, A. L. & da S., Marrelli, M. T. & Wilke, A. B. B.,. The influence of anthropogenic habitat fragmentation on the genetic structure and diversity of the malaria vector Anopheles cruzii (Diptera: Culicidae). Sci. Rep. 10, 18018 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 22.

    Wilke, A. B. B. et al. Urbanization creates diverse aquatic habitats for immature mosquitoes in urban areas. Sci. Rep. 9, 15335 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 23.

    Pernat, N., Kampen, H., Jeschke, J. M. & Werner, D. Buzzing homes: Using citizen science data to explore the effects of urbanization on indoor mosquito communities. Insects 12, 1–13 (2021).

    Google Scholar 

  • 24.

    Blosser, E. M. & Burkett-cadena, N. D. Acta Tropica Culex (Melanoconion) panocossa from peninsular Florida, USA. Acta Trop. 167, 59–63 (2017).

    PubMed 

    Google Scholar 

  • 25.

    Bhatt, S. et al. The global distribution and burden of dengue. Nature 496, 504–507 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 26.

    Sun, K. et al. Quantifying the risk of local Zika virus transmission in the contiguous US during the 2015–2016 ZIKV epidemic. BMC Med. 16, 195 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Rose, N. H. et al. Climate and urbanization drive mosquito preference for humans. Curr. Biol. 30, 3570-3579.e6 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Wilke, A. B. B. et al. Mosquito adaptation to the extreme habitats of urban construction sites. Trends Parasitol. 35, 607–614 (2019).

    PubMed 

    Google Scholar 

  • 29.

    Ajelli, M. et al. Host outdoor exposure variability affects the transmission and spread of Zika virus: Insights for epidemic control. PLoS Negl. Trop. Dis. 11, e0005851 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    Mutebi, J.-P. et al. Zika virus MB16-23 in mosquitoes, Miami-Dade County, Florida, USA, 2016. Emerg. Infect. Dis. 24, 808–810 (2018).

    PubMed Central 

    Google Scholar 

  • 31.

    Little, E. et al. Socio-ecological mechanisms supporting high densities of Aedes albopictus (Diptera: Culicidae) in Baltimore, MD. J. Med. Entomol. 54, 1183–1192 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Burkett-Cadena, N. D., McClure, C. J. W., Estep, L. K. & Eubanks, M. D. What drives the spatial distribution of mosquitoes?. Ecosphere 4, 1–16 (2013).

    Google Scholar 

  • 33.

    LaDeau, S. L., Leisnham, P. T., Biehler, D. & Bodner, D. Higher mosquito production in low-income neighborhoods of Baltimore and Washington, DC: Understanding ecological drivers and mosquito-borne disease risk in temperate cities. Int. J. Environ. Res. Public Health 10, 1505–1526 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Dowling, Z. et al. Linking mosquito infestation to resident socioeconomic status, knowledge, and source reduction practices in Suburban Washington, DC. EcoHealth 10, 36–47 (2013).

    PubMed 

    Google Scholar 

  • 35.

    Scavo, N. A., Barrera, R., Reyes-Torres, L. J. & Yee, D. A. Lower socioeconomic status neighborhoods in Puerto Rico have more diverse mosquito communities and higher Aedes aegypti abundance. J. Urban Ecol. 7, 1–11 (2021).

    Google Scholar 

  • 36.

    Trewin, B. J. et al. The elimination of the dengue vector, Aedes aegypti, from Brisbane, Australia: The role of surveillance, larval habitat removal and policy. PLoS Negl. Trop. Dis. 11, e0005848 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 37.

    Multini, L. C., de Souza, A. L. & da S., Marrelli, M. T. & Wilke, A. B. B.,. Population structuring of the invasive mosquito Aedes albopictus (Diptera: Culicidae) on a microgeographic scale. PLoS ONE 14, e0220773 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Leta, S. et al. Global risk mapping for major diseases transmitted by Aedes aegypti and Aedes albopictus. Int. J. Infect. Dis. 67, 25–35 (2018).

    PubMed 

    Google Scholar 

  • 39.

    Benelli, G., Wilke, A. B. B. & Beier, J. C. Aedes albopictus (Asian Tiger Mosquito). Trends Parasitol. 36, 942–943 (2020).

    PubMed 

    Google Scholar 

  • 40.

    Benelli, G. & Mehlhorn, H. Declining malaria, rising of dengue and Zika virus: Insights for mosquito vector control. Parasitol. Res. 115, 1747–1754 (2016).

    PubMed 

    Google Scholar 

  • 41.

    Danauskas, J. X., Ehrenkranz, N. J., Davies, J. E. & Pond, W. L. Arboviruses and human disease in South Florida. Am. J. Trop. Med. Hyg. 15, 205–210 (1966).

    PubMed 

    Google Scholar 

  • 42.

    Gill, J., Stark, L. M. & Clark, G. G. Dengue surveillance in Florida, 1997–98. Emerg. Infect. Dis. 6, 30–35 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 43.

    Rey, J. Dengue in Florida (USA). Insects 5, 991–1000 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Vitek, C. J., Richards, S. L., Mores, C. N., Day, J. F. & Lord, C. C. Arbovirus transmission by Culex nigripalpus in Florida, 2005. J. Med. Entomol. 45, 483–493 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 45.

    Messenger, A. M. et al. Serological evidence of ongoing transmission of dengue virus in permanent residents of Key West, Florida. Vector Borne Zoonotic Dis. 14, 783–787 (2014).

    PubMed 

    Google Scholar 

  • 46.

    Patterson, K. D. Yellow fever epidemics and mortality in the United States, 1693–1905. Soc. Sci. Med. 34, 855–865 (1992).

    CAS 
    PubMed 

    Google Scholar 

  • 47.

    Grubaugh, N. D. et al. Genomic epidemiology reveals multiple introductions of Zika virus into the United States. Nature 546, 401–405 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 48.

    Likos, A. et al. Local mosquito-borne transmission of zika virus—Miami-Dade and Broward Counties, Florida, June–August 2016. Morb. Mortal. Wkly. Rep. 65, 1032–1038 (2016).

    Google Scholar 

  • 49.

    Florida Department of Health. Available at: http://www.floridahealth.gov/diseases-and-conditions/mosquito-borne-diseases/_documents/week52arbovirusreport-12-31-16.pdf (2016).

  • 50.

    Florida Department of Health. Available at: http://www.floridahealth.gov/diseases-and-conditions/mosquito-borne-diseases/_documents/alert-dade-wnv-human-10-19-20.pdf (2020)

  • 51.

    Wilke, A. B. B. et al. Local conditions favor dengue transmission in the contiguous United States. Entomol. Gen. 41, 523–529 (2021).

    Google Scholar 

  • 52.

    Alto, B. W., Connelly, C. R., O’Meara, G. F., Hickman, D. & Karr, N. Reproductive biology and susceptibility of Florida Culex coronator to infection with West Nile virus. Vector-Borne Zoonotic Dis. 14, 606–614 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 53.

    Honório, N. A., Wiggins, K., Câmara, D. C. P., Eastmond, B. & Alto, B. W. Chikungunya virus vector competency of Brazilian and Florida mosquito vectors. PLoS Negl. Trop. Dis. 12, 1–16 (2018).

    Google Scholar 

  • 54.

    Richards, S. L., Anderson, S. L. & Lord, C. C. Vector competence of Culex pipiens quinquefasciatus (Diptera: Culicidae) for West Nile virus isolates from Florida. Trop. Med. Int. Heal. 19, 610–617 (2014).

    Google Scholar 

  • 55.

    Hribar, L. J., Smith, J. M., Vlach, J. J. & Verna, T. N. Survey of container-breeding mosquitoes from the Florida Keys, Monroe County, Florida. J. Am. Mosq. Control Assoc. 17, 245–248 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 56.

    United States Environmental Protection Agency. Growing for a sustainable future: Miami-Dade County urban development boundary assessment. Available at: http://www.epa.gov/smartgrowth/pdf/Miami-Dade_Final_Report_12-12-12.pdf (2012).

  • 57.

    Miami-Dade County Building Permits. Available at, http://www.miamidade.gov/permits/.

  • 58.

    Wilke, A. B. B., Carvajal, A., Vasquez, C., Petrie, W. D. & Beier, J. C. Urban farms in Miami-Dade County, Florida have favorable environments for vector mosquitoes. PLoS ONE 15, e0230825 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 59.

    Reba, M., Reitsma, F. & Seto, K. C. Spatializing 6,000 years of global urbanization from 3700 BC to AD 2000. Sci. Data 3, 1–16 (2016).

    Google Scholar 

  • 60.

    Ceretti-Júnior, W. et al. Mosquito faunal survey in a central park of the city of São Paulo, Brazil. J. Am. Mosq. Control Assoc. 31, 172–176 (2015).

    PubMed 

    Google Scholar 

  • 61.

    Ferraguti, M. et al. Effects of landscape anthropization on mosquito community composition and abundance. Sci. Rep. 6, 29002 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 62.

    Zahouli, J. B. Z. et al. Effect of land-use changes on the abundance, distribution, and host-seeking behavior of Aedes arbovirus vectors in oil palm-dominated landscapes, southeastern Côte d’Ivoire. PLoS ONE 12, e0189082 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 63.

    Westby, K. M., Adalsteinsson, S. A., Biro, E. G., Beckermann, A. J. & Medley, K. A. Aedes albopictus populations and larval habitat characteristics across the landscape: Significant differences exist between urban and rural land use types. Insects 12, 196 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 64.

    Estallo, E. L. et al. Modelling the distribution of the vector Aedes aegypti in a central Argentine city. Med. Vet. Entomol. 32, 451–461 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 65.

    Messina, J. P. et al. A global compendium of human dengue virus occurrence. Sci. Data 1, 140004 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 66.

    Cunha, M. S. et al. Epizootics due to yellow fever virus in São Paulo State, Brazil: viral dissemination to new areas (2016–2017). Sci. Rep. 9, 5474 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 67.

    Ronca, S. E., Murray, K. O. & Nolan, M. S. Cumulative incidence of West Nile virus infection, continental United States, 1999–2016. Emerg. Infect. Dis. 25, 325–327 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 68.

    Poletti, P. et al. Transmission potential of chikungunya virus and control measures: The case of Italy. PLoS ONE 6, e18860 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 69.

    Wilk-da-Silva, R. & de Souza Leal Diniz, M. M. C., Marrelli, M. T. & Wilke, A. B. B.,. Wing morphometric variability in Aedes aegypti (Diptera: Culicidae) from different urban built environments. Parasit. Vectors 11, 561 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 70.

    Wilke, A. B. B. et al. Cemeteries in Miami-Dade County, Florida are important areas to be targeted in mosquito management and control efforts. PLoS ONE 15, e0230748 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 71.

    Weaver, S. C. Urbanization and geographic expansion of zoonotic arboviral diseases: Mechanisms and potential strategies for prevention. Trends Microbiol. 21, 360–363 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 72.

    Wilke, A. B. B., Vasquez, C., Petrie, W. & Beier, J. C. Tire shops in Miami-Dade County, Florida are important producers of vector mosquitoes. PLoS ONE 14, 2 (2019).

    Google Scholar 

  • 73.

    Kothera, L., Godsey, M., Mutebi, J. P. & Savage, H. M. A comparison of aboveground and belowground populations of Culex pipiens (Diptera: Culicidae) mosquitoes in Chicago, Illinois, and New York City, New York, using microsatellites. J. Med. Entomol. 47, 805–813 (2010).

    PubMed 

    Google Scholar 

  • 74.

    World Health Organization. Handbook for Integrated Vector Management (World Health Organization, 2012).

    Google Scholar 

  • 75.

    Lizzi, K. M., Qualls, W. A., Brown, S. C. & Beier, J. C. Expanding Integrated Vector Management to promote healthy environments. Trends Parasitol. 30, 394–400 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 76.

    Souza, R. L. et al. Effect of an intervention in storm drains to prevent Aedes aegypti reproduction in Salvador, Brazil. Parasit. Vectors 10, 1–6 (2017).

    Google Scholar 

  • 77.

    Wilke, A. B. B., Beier, J. C. & Benelli, G. Transgenic mosquitoes—Fact or fiction?. Trends Parasitol. 34, 456–465 (2018).

    PubMed 

    Google Scholar 

  • 78.

    Beier, J. C., Wilke, A. B. B. & Benelli, G. Newer approaches for malaria vector control and challenges of outdoor transmission. Towards Malaria Elimination – A Leap Forward https://doi.org/10.5772/intechopen.75513 (2018).

    Article 

    Google Scholar 

  • 79.

    World Health Organization. Tenth Meeting of the WHO Vector Control Advisory Group. (2019).

  • 80.

    Wilke, A. B. B. et al. Effectiveness of adulticide and larvicide in controlling high densities of Aedes aegypti in urban environments. PLoS ONE 16, e0246046 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 81.

    Vicente-Serrano, S. M. et al. Response of vegetation to drought time-scales across global land biomes. Proc. Natl. Acad. Sci. 110, 52–57 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 82.

    Rifat, S. A. & Al & Liu, W.,. Quantifying spatiotemporal patterns and major explanatory factors of urban expansion in Miami metropolitan area during 1992–2016. Remote Sens. 11, 2493 (2019).

    ADS 

    Google Scholar 

  • 83.

    Fuller, D. O. & Wang, Y. Recent trends in satellite vegetation index observations indicate decreasing vegetation biomass in the southeastern saline Everglades wetlands. Wetlands 34, 67–77 (2014).

    Google Scholar 

  • 84.

    Wilke, A. B. B. et al. Assessment of the effectiveness of BG-Sentinel traps baited with CO2 and BG-Lure for the surveillance of vector mosquitoes in Miami-Dade County. Florida. PLoS One 14, e0212688 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 85.

    Darsie, R. F. Jr. & Morris, C. D. Keys to the adult females and fourth-instar larvae of the mosquitoes of Florida (Diptera, Culicidae). 1st ed. Vol. 1. Tech Bull Florida Mosq Cont Assoc (2000).

  • 86.

    Anderson, M. J. Permutational Multivariate Analysis of Variance (PERMANOVA). Wiley StatsRef: Statistics Reference Online. 1–15 (2017) DOI:https://doi.org/10.1002/9781118445112.stat07841.

  • 87.

    Alencar, J. et al. Culicidae community composition and temporal dynamics in Guapiaçu ecological reserve, Cachoeiras de Macacu, Rio de Janeiro, Brazil. PLoS ONE 10, 1–16 (2015).

    Google Scholar 

  • 88.

    Clarke, K. R. Non-parametric multivariate analyses of changes in community structure. Austral Ecol. 18, 117–143 (1993).

    Google Scholar 

  • 89.

    Hammer, Ø., Harper, D. A. T. T. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 9 (2001).

    Google Scholar 

  • 90.

    Ryan, P. A., Lyons, S. A., Alsemgeest, D., Thomas, P. & Kay, B. H. Spatial statistical analysis of adult mosquito (Diptera: Culicidae) counts: An example using light trap data, in Redland Shire, southeastern Queensland, Australia. J. Med. Entomol. 41, 1143–1156 (2004).

    PubMed 

    Google Scholar 

  • 91.

    O’Brien, R. M. A caution regarding rules of thumb for variance inflation factors. Qual. Quant. 41, 673–690 (2007).

    Google Scholar 

  • 92.

    Wilke, A. B. B., Medeiros-Sousa, A. R., Ceretti-Junior, W. & Marrelli, M. T. Mosquito populations dynamics associated with climate variations. Acta Trop. 166, 343–350 (2016).

    PubMed 

    Google Scholar 

  • 93.

    Cohen, J. Eta-squared and partial eta-squared in fixed factor ANOVA designs. Educ. Psychol. Meas. 33, 107–112 (1973).

    Google Scholar 


  • Source: Ecology - nature.com

    Observed increases in extreme fire weather driven by atmospheric humidity and temperature

    Evolution of cooperation in costly institutions exhibits Red Queen and Black Queen dynamics in heterogeneous public goods