World Health Organization. Vector-borne diseases. Available at: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue (2020).
Wilke, A. B. B., Beier, J. C. & Benelli, G. Complexity of the relationship between global warming and urbanization—an obscure future for predicting increases in vector-borne infectious diseases. Curr. Opin. Insect Sci. 35, 1–9 (2019).
Google Scholar
Wilke, A. B. B. et al. Proliferation of Aedes aegypti in urban environments mediated by the availability of key aquatic habitats. Sci. Rep. 10, 12925 (2020).
Google Scholar
Wilke, A. B. B., Wilk-da-Silva, R. & Marrelli, M. T. Microgeographic population structuring of Aedes aegypti (Diptera: Culicidae). PLoS ONE 12, e0185150 (2017).
Google Scholar
Gubler, D. J. Dengue, urbanization and globalization: The unholy trinity of the 21st Century. Trop. Med. Health 39, S3–S11 (2011).
Johnson, M. T. J. & Munshi-South, J. Evolution of life in urban environments. Science 358, 8327 (2017).
Zohdy, S., Schwartz, T. S. & Oaks, J. R. The coevolution effect as a driver of spillover. Trends Parasitol. 35, 399–408 (2019).
Google Scholar
Rochlin, I., Faraji, A., Ninivaggi, D. V., Barker, C. M. & Kilpatrick, A. M. Anthropogenic impacts on mosquito populations in North America over the past century. Nat. Commun. 7, 13604 (2016).
Google Scholar
Wilke, A. B. B. et al. Community composition and year-round abundance of vector species of mosquitoes make Miami-Dade County, Florida a receptive gateway for arbovirus entry to the United States. Sci. Rep. 9, 8732 (2019).
Google Scholar
Burkett-Cadena, N. D. & Vittor, A. Y. Deforestation and vector-borne disease: Forest conversion favors important mosquito vectors of human pathogens. Basic Appl. Ecol. 26, 101–110 (2018).
Google Scholar
Rochlin, I., Harding, K., Ginsberg, H. S. & Campbell, S. R. Comparative analysis of distribution and abundance of West Nile and eastern equine encephalomyelitis virus vectors in Suffolk County, New York, using human population density and land use/cover data. J. Med. Entomol. 45, 563–571 (2008).
Google Scholar
Monaghan, A. J. et al. Consensus and uncertainty in the geographic range of Aedes aegypti and Aedes albopictus in the contiguous United States: Multi-model assessment and synthesis. PLoS Comput. Biol. 15, 1–19 (2019).
Wilke, A. B. B., Benelli, G. & Beier, J. C. Beyond frontiers: On invasive alien mosquito species in America and Europe. PLoS Negl. Trop. Dis. 14, e0007864 (2020).
Google Scholar
Kraemer, M. U. G. et al. The global compendium of Aedes aegypti and Ae. albopictus occurrence. Sci. Data 2, 150035 (2015).
Google Scholar
Dirzo, R. et al. Defaunation in the anthropocene. Science 345, 401–406 (2014).
Google Scholar
Lewis, S. L. & Maslin, M. A. Defining the anthropocene. Nature 519, 171–180 (2015).
Google Scholar
Law, K. L. & Thompson, R. C. Microplastics in the seas. Science 345, 144–145 (2014).
Google Scholar
Jambeck, J. R. et al. Plastic waste inputs from land into the ocean. Science 347, 768–771 (2015).
Google Scholar
Turner, W. R., Oppenheimer, M. & Wilcove, D. S. A force to fight global warming. Nature 462, 278–279 (2009).
Google Scholar
United Nations. World population prospects 2019. Department of Economic and Social Affairs. World Population Prospects 2019. (2019).
Multini, L. C., de Souza, A. L. & da S., Marrelli, M. T. & Wilke, A. B. B.,. The influence of anthropogenic habitat fragmentation on the genetic structure and diversity of the malaria vector Anopheles cruzii (Diptera: Culicidae). Sci. Rep. 10, 18018 (2020).
Google Scholar
Wilke, A. B. B. et al. Urbanization creates diverse aquatic habitats for immature mosquitoes in urban areas. Sci. Rep. 9, 15335 (2019).
Google Scholar
Pernat, N., Kampen, H., Jeschke, J. M. & Werner, D. Buzzing homes: Using citizen science data to explore the effects of urbanization on indoor mosquito communities. Insects 12, 1–13 (2021).
Blosser, E. M. & Burkett-cadena, N. D. Acta Tropica Culex (Melanoconion) panocossa from peninsular Florida, USA. Acta Trop. 167, 59–63 (2017).
Google Scholar
Bhatt, S. et al. The global distribution and burden of dengue. Nature 496, 504–507 (2013).
Google Scholar
Sun, K. et al. Quantifying the risk of local Zika virus transmission in the contiguous US during the 2015–2016 ZIKV epidemic. BMC Med. 16, 195 (2018).
Google Scholar
Rose, N. H. et al. Climate and urbanization drive mosquito preference for humans. Curr. Biol. 30, 3570-3579.e6 (2020).
Google Scholar
Wilke, A. B. B. et al. Mosquito adaptation to the extreme habitats of urban construction sites. Trends Parasitol. 35, 607–614 (2019).
Google Scholar
Ajelli, M. et al. Host outdoor exposure variability affects the transmission and spread of Zika virus: Insights for epidemic control. PLoS Negl. Trop. Dis. 11, e0005851 (2017).
Google Scholar
Mutebi, J.-P. et al. Zika virus MB16-23 in mosquitoes, Miami-Dade County, Florida, USA, 2016. Emerg. Infect. Dis. 24, 808–810 (2018).
Google Scholar
Little, E. et al. Socio-ecological mechanisms supporting high densities of Aedes albopictus (Diptera: Culicidae) in Baltimore, MD. J. Med. Entomol. 54, 1183–1192 (2017).
Google Scholar
Burkett-Cadena, N. D., McClure, C. J. W., Estep, L. K. & Eubanks, M. D. What drives the spatial distribution of mosquitoes?. Ecosphere 4, 1–16 (2013).
LaDeau, S. L., Leisnham, P. T., Biehler, D. & Bodner, D. Higher mosquito production in low-income neighborhoods of Baltimore and Washington, DC: Understanding ecological drivers and mosquito-borne disease risk in temperate cities. Int. J. Environ. Res. Public Health 10, 1505–1526 (2013).
Google Scholar
Dowling, Z. et al. Linking mosquito infestation to resident socioeconomic status, knowledge, and source reduction practices in Suburban Washington, DC. EcoHealth 10, 36–47 (2013).
Google Scholar
Scavo, N. A., Barrera, R., Reyes-Torres, L. J. & Yee, D. A. Lower socioeconomic status neighborhoods in Puerto Rico have more diverse mosquito communities and higher Aedes aegypti abundance. J. Urban Ecol. 7, 1–11 (2021).
Trewin, B. J. et al. The elimination of the dengue vector, Aedes aegypti, from Brisbane, Australia: The role of surveillance, larval habitat removal and policy. PLoS Negl. Trop. Dis. 11, e0005848 (2017).
Google Scholar
Multini, L. C., de Souza, A. L. & da S., Marrelli, M. T. & Wilke, A. B. B.,. Population structuring of the invasive mosquito Aedes albopictus (Diptera: Culicidae) on a microgeographic scale. PLoS ONE 14, e0220773 (2019).
Google Scholar
Leta, S. et al. Global risk mapping for major diseases transmitted by Aedes aegypti and Aedes albopictus. Int. J. Infect. Dis. 67, 25–35 (2018).
Google Scholar
Benelli, G., Wilke, A. B. B. & Beier, J. C. Aedes albopictus (Asian Tiger Mosquito). Trends Parasitol. 36, 942–943 (2020).
Google Scholar
Benelli, G. & Mehlhorn, H. Declining malaria, rising of dengue and Zika virus: Insights for mosquito vector control. Parasitol. Res. 115, 1747–1754 (2016).
Google Scholar
Danauskas, J. X., Ehrenkranz, N. J., Davies, J. E. & Pond, W. L. Arboviruses and human disease in South Florida. Am. J. Trop. Med. Hyg. 15, 205–210 (1966).
Google Scholar
Gill, J., Stark, L. M. & Clark, G. G. Dengue surveillance in Florida, 1997–98. Emerg. Infect. Dis. 6, 30–35 (2000).
Google Scholar
Rey, J. Dengue in Florida (USA). Insects 5, 991–1000 (2014).
Google Scholar
Vitek, C. J., Richards, S. L., Mores, C. N., Day, J. F. & Lord, C. C. Arbovirus transmission by Culex nigripalpus in Florida, 2005. J. Med. Entomol. 45, 483–493 (2008).
Google Scholar
Messenger, A. M. et al. Serological evidence of ongoing transmission of dengue virus in permanent residents of Key West, Florida. Vector Borne Zoonotic Dis. 14, 783–787 (2014).
Google Scholar
Patterson, K. D. Yellow fever epidemics and mortality in the United States, 1693–1905. Soc. Sci. Med. 34, 855–865 (1992).
Google Scholar
Grubaugh, N. D. et al. Genomic epidemiology reveals multiple introductions of Zika virus into the United States. Nature 546, 401–405 (2017).
Google Scholar
Likos, A. et al. Local mosquito-borne transmission of zika virus—Miami-Dade and Broward Counties, Florida, June–August 2016. Morb. Mortal. Wkly. Rep. 65, 1032–1038 (2016).
Florida Department of Health. Available at: http://www.floridahealth.gov/diseases-and-conditions/mosquito-borne-diseases/_documents/week52arbovirusreport-12-31-16.pdf (2016).
Florida Department of Health. Available at: http://www.floridahealth.gov/diseases-and-conditions/mosquito-borne-diseases/_documents/alert-dade-wnv-human-10-19-20.pdf (2020)
Wilke, A. B. B. et al. Local conditions favor dengue transmission in the contiguous United States. Entomol. Gen. 41, 523–529 (2021).
Alto, B. W., Connelly, C. R., O’Meara, G. F., Hickman, D. & Karr, N. Reproductive biology and susceptibility of Florida Culex coronator to infection with West Nile virus. Vector-Borne Zoonotic Dis. 14, 606–614 (2014).
Google Scholar
Honório, N. A., Wiggins, K., Câmara, D. C. P., Eastmond, B. & Alto, B. W. Chikungunya virus vector competency of Brazilian and Florida mosquito vectors. PLoS Negl. Trop. Dis. 12, 1–16 (2018).
Richards, S. L., Anderson, S. L. & Lord, C. C. Vector competence of Culex pipiens quinquefasciatus (Diptera: Culicidae) for West Nile virus isolates from Florida. Trop. Med. Int. Heal. 19, 610–617 (2014).
Hribar, L. J., Smith, J. M., Vlach, J. J. & Verna, T. N. Survey of container-breeding mosquitoes from the Florida Keys, Monroe County, Florida. J. Am. Mosq. Control Assoc. 17, 245–248 (2001).
Google Scholar
United States Environmental Protection Agency. Growing for a sustainable future: Miami-Dade County urban development boundary assessment. Available at: http://www.epa.gov/smartgrowth/pdf/Miami-Dade_Final_Report_12-12-12.pdf (2012).
Miami-Dade County Building Permits. Available at, http://www.miamidade.gov/permits/.
Wilke, A. B. B., Carvajal, A., Vasquez, C., Petrie, W. D. & Beier, J. C. Urban farms in Miami-Dade County, Florida have favorable environments for vector mosquitoes. PLoS ONE 15, e0230825 (2020).
Google Scholar
Reba, M., Reitsma, F. & Seto, K. C. Spatializing 6,000 years of global urbanization from 3700 BC to AD 2000. Sci. Data 3, 1–16 (2016).
Ceretti-Júnior, W. et al. Mosquito faunal survey in a central park of the city of São Paulo, Brazil. J. Am. Mosq. Control Assoc. 31, 172–176 (2015).
Google Scholar
Ferraguti, M. et al. Effects of landscape anthropization on mosquito community composition and abundance. Sci. Rep. 6, 29002 (2016).
Google Scholar
Zahouli, J. B. Z. et al. Effect of land-use changes on the abundance, distribution, and host-seeking behavior of Aedes arbovirus vectors in oil palm-dominated landscapes, southeastern Côte d’Ivoire. PLoS ONE 12, e0189082 (2017).
Google Scholar
Westby, K. M., Adalsteinsson, S. A., Biro, E. G., Beckermann, A. J. & Medley, K. A. Aedes albopictus populations and larval habitat characteristics across the landscape: Significant differences exist between urban and rural land use types. Insects 12, 196 (2021).
Google Scholar
Estallo, E. L. et al. Modelling the distribution of the vector Aedes aegypti in a central Argentine city. Med. Vet. Entomol. 32, 451–461 (2018).
Google Scholar
Messina, J. P. et al. A global compendium of human dengue virus occurrence. Sci. Data 1, 140004 (2014).
Google Scholar
Cunha, M. S. et al. Epizootics due to yellow fever virus in São Paulo State, Brazil: viral dissemination to new areas (2016–2017). Sci. Rep. 9, 5474 (2019).
Google Scholar
Ronca, S. E., Murray, K. O. & Nolan, M. S. Cumulative incidence of West Nile virus infection, continental United States, 1999–2016. Emerg. Infect. Dis. 25, 325–327 (2019).
Google Scholar
Poletti, P. et al. Transmission potential of chikungunya virus and control measures: The case of Italy. PLoS ONE 6, e18860 (2011).
Google Scholar
Wilk-da-Silva, R. & de Souza Leal Diniz, M. M. C., Marrelli, M. T. & Wilke, A. B. B.,. Wing morphometric variability in Aedes aegypti (Diptera: Culicidae) from different urban built environments. Parasit. Vectors 11, 561 (2018).
Google Scholar
Wilke, A. B. B. et al. Cemeteries in Miami-Dade County, Florida are important areas to be targeted in mosquito management and control efforts. PLoS ONE 15, e0230748 (2020).
Google Scholar
Weaver, S. C. Urbanization and geographic expansion of zoonotic arboviral diseases: Mechanisms and potential strategies for prevention. Trends Microbiol. 21, 360–363 (2013).
Google Scholar
Wilke, A. B. B., Vasquez, C., Petrie, W. & Beier, J. C. Tire shops in Miami-Dade County, Florida are important producers of vector mosquitoes. PLoS ONE 14, 2 (2019).
Kothera, L., Godsey, M., Mutebi, J. P. & Savage, H. M. A comparison of aboveground and belowground populations of Culex pipiens (Diptera: Culicidae) mosquitoes in Chicago, Illinois, and New York City, New York, using microsatellites. J. Med. Entomol. 47, 805–813 (2010).
Google Scholar
World Health Organization. Handbook for Integrated Vector Management (World Health Organization, 2012).
Lizzi, K. M., Qualls, W. A., Brown, S. C. & Beier, J. C. Expanding Integrated Vector Management to promote healthy environments. Trends Parasitol. 30, 394–400 (2014).
Google Scholar
Souza, R. L. et al. Effect of an intervention in storm drains to prevent Aedes aegypti reproduction in Salvador, Brazil. Parasit. Vectors 10, 1–6 (2017).
Wilke, A. B. B., Beier, J. C. & Benelli, G. Transgenic mosquitoes—Fact or fiction?. Trends Parasitol. 34, 456–465 (2018).
Google Scholar
Beier, J. C., Wilke, A. B. B. & Benelli, G. Newer approaches for malaria vector control and challenges of outdoor transmission. Towards Malaria Elimination – A Leap Forward https://doi.org/10.5772/intechopen.75513 (2018).
Google Scholar
World Health Organization. Tenth Meeting of the WHO Vector Control Advisory Group. (2019).
Wilke, A. B. B. et al. Effectiveness of adulticide and larvicide in controlling high densities of Aedes aegypti in urban environments. PLoS ONE 16, e0246046 (2021).
Google Scholar
Vicente-Serrano, S. M. et al. Response of vegetation to drought time-scales across global land biomes. Proc. Natl. Acad. Sci. 110, 52–57 (2013).
Google Scholar
Rifat, S. A. & Al & Liu, W.,. Quantifying spatiotemporal patterns and major explanatory factors of urban expansion in Miami metropolitan area during 1992–2016. Remote Sens. 11, 2493 (2019).
Google Scholar
Fuller, D. O. & Wang, Y. Recent trends in satellite vegetation index observations indicate decreasing vegetation biomass in the southeastern saline Everglades wetlands. Wetlands 34, 67–77 (2014).
Wilke, A. B. B. et al. Assessment of the effectiveness of BG-Sentinel traps baited with CO2 and BG-Lure for the surveillance of vector mosquitoes in Miami-Dade County. Florida. PLoS One 14, e0212688 (2019).
Google Scholar
Darsie, R. F. Jr. & Morris, C. D. Keys to the adult females and fourth-instar larvae of the mosquitoes of Florida (Diptera, Culicidae). 1st ed. Vol. 1. Tech Bull Florida Mosq Cont Assoc (2000).
Anderson, M. J. Permutational Multivariate Analysis of Variance (PERMANOVA). Wiley StatsRef: Statistics Reference Online. 1–15 (2017) DOI:https://doi.org/10.1002/9781118445112.stat07841.
Alencar, J. et al. Culicidae community composition and temporal dynamics in Guapiaçu ecological reserve, Cachoeiras de Macacu, Rio de Janeiro, Brazil. PLoS ONE 10, 1–16 (2015).
Clarke, K. R. Non-parametric multivariate analyses of changes in community structure. Austral Ecol. 18, 117–143 (1993).
Hammer, Ø., Harper, D. A. T. T. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 9 (2001).
Ryan, P. A., Lyons, S. A., Alsemgeest, D., Thomas, P. & Kay, B. H. Spatial statistical analysis of adult mosquito (Diptera: Culicidae) counts: An example using light trap data, in Redland Shire, southeastern Queensland, Australia. J. Med. Entomol. 41, 1143–1156 (2004).
Google Scholar
O’Brien, R. M. A caution regarding rules of thumb for variance inflation factors. Qual. Quant. 41, 673–690 (2007).
Wilke, A. B. B., Medeiros-Sousa, A. R., Ceretti-Junior, W. & Marrelli, M. T. Mosquito populations dynamics associated with climate variations. Acta Trop. 166, 343–350 (2016).
Google Scholar
Cohen, J. Eta-squared and partial eta-squared in fixed factor ANOVA designs. Educ. Psychol. Meas. 33, 107–112 (1973).
Source: Ecology - nature.com