in

Urinary neopterin of wild chimpanzees indicates that cell-mediated immune activity varies by age, sex, and female reproductive status

  • 1.

    Sadd, B. M. & Schmid-Hempel, P. Principles of ecological immunology. Evol. Appl. 2, 113–121. https://doi.org/10.1111/j.1752-4571.2008.00057.x (2009).

    Article 
    PubMed 

    Google Scholar 

  • 2.

    Kew, C. et al. Evolutionarily conserved regulation of immunity by the splicing factor RNP-6/PUF60. eLife 9, e57591, https://doi.org/10.7554/eLife.57591 (2020).

  • 3.

    Jurk, D. et al. Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nat. Commun. 2, 4172–4172. https://doi.org/10.1038/ncomms5172 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 4.

    Lee, K. A. Linking immune defenses and life history at the levels of the individual and the species. Integr. Comp. Biol. 46, 1000–1015. https://doi.org/10.1093/icb/icl049 (2006).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 5.

    Demas, G. E. & Nelson, R. J. Ecoimmunology. (Oxford University Press, 2012).

  • 6.

    Brock, P. M., Murdock, C. C. & Martin, L. B. The history of ecoimmunology and its integration with disease ecology. Integr. Comp. Biol. 54, 353–362. https://doi.org/10.1093/icb/icu046 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    Gurven, M., Kaplan, H., Winking, J., Finch, C. & Crimmins, E. M. Aging and inflammation in two epidemiological worlds. J. Gerontol. A Biol. Sci. Med. Sci. 63, 196–199, https://doi.org/10.1093/gerona/63.2.196 (2008).

  • 8.

    Blackwell, A. D. et al. Immune function in Amazonian horticulturalists. Ann. Hum. Biol. 43, 382–396. https://doi.org/10.1080/03014460.2016.1189963 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 9.

    Blackwell, A. D., Martin, M., Kaplan, H. & Gurven, M. Antagonism between two intestinal parasites in humans: the importance of co-infection for infection risk and recovery dynamics. Proc. Biol. Sci. 280, 20131671–20131671. https://doi.org/10.1098/rspb.2013.1671 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    Vasunilashorn, S. et al. Blood lipids, infection, and inflammatory markers in the Tsimane of Bolivia. Am. J. Hum. Biol. 22, 731–740. https://doi.org/10.1002/ajhb.21074 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Kraft, T. S. et al. Multi-system physiological dysregulation and ageing in a subsistence population. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 375, 20190610. https://doi.org/10.1098/rstb.2019.0610 (2020).

    Article 
    PubMed 

    Google Scholar 

  • 12.

    Dansereau, G. et al. Conservation of physiological dysregulation signatures of aging across primates. Aging Cell 18, e12925–e12925. https://doi.org/10.1111/acel.12925 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Birkett, L. P. & Newton-Fisher, N. E. How abnormal is the behaviour of captive, zoo-living chimpanzees?. PLoS ONE 6, e20101. https://doi.org/10.1371/journal.pone.0020101 (2011).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    Lewton, K. L. The effects of captive versus wild rearing environments on long bone articular surfaces in common chimpanzees (Pan troglodytes). PeerJ 5, e3668–e3668. https://doi.org/10.7717/peerj.3668 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Atsalis, S. & Videan, E. Reproductive aging in captive and wild common chimpanzees: Factors influencing the rate of follicular depletion. Am. J. Primatol. 71, 271–282. https://doi.org/10.1002/ajp.20650 (2009).

    Article 
    PubMed 

    Google Scholar 

  • 16.

    Michaud, M. et al. Proinflammatory cytokines, aging, and age-related diseases. J. Am. Med. Dir. Assoc. 14, 877–882. https://doi.org/10.1016/j.jamda.2013.05.009 (2013).

    Article 
    PubMed 

    Google Scholar 

  • 17.

    Ian, D. G. The effect of aging on susceptibility to infection. Rev. Infect. Dis. 2, 801–810. https://doi.org/10.1093/clinids/2.5.801 (1980).

    Article 

    Google Scholar 

  • 18.

    Monti, D., Ostan, R., Borelli, V., Castellani, G. & Franceschi, C. Inflammaging and human longevity in the omics era. Mech. Ageing Dev. 165, 129–138. https://doi.org/10.1016/j.mad.2016.12.008 (2017).

    Article 
    PubMed 

    Google Scholar 

  • 19.

    Walker, E. M. et al. Inflammaging phenotype in rhesus macaques is associated with a decline in epithelial barrier-protective functions and increased pro-inflammatory function in CD161-expressing cells. Geroscience 41, 739–757. https://doi.org/10.1007/s11357-019-00099-7 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 20.

    Baylis, D., Bartlett, D. B., Patel, H. P. & Roberts, H. C. Understanding how we age: insights into inflammaging. Longev. Healthspan 2, 8–8. https://doi.org/10.1186/2046-2395-2-8 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Peters, A., Delhey, K., Nakagawa, S., Aulsebrook, A. & Verhulst, S. Immunosenescence in wild animals: Meta-analysis and outlook. Ecol. Lett. 22, 1709–1722. https://doi.org/10.1111/ele.13343 (2019).

    Article 
    PubMed 

    Google Scholar 

  • 22.

    Cheynel, L. et al. Immunosenescence patterns differ between populations but not between sexes in a long-lived mammal. Sci. Rep. 7, 13700–13700. https://doi.org/10.1038/s41598-017-13686-5 (2017).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 23.

    Nussey, D. H., Watt, K., Pilkington, J. G., Zamoyska, R. & McNeilly, T. N. Age-related variation in immunity in a wild mammal population. Aging Cell 11, 178–180. https://doi.org/10.1111/j.1474-9726.2011.00771.x (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Dibakou, S. E. et al. Ecological, parasitological and individual determinants of plasma neopterin levels in a natural mandrill population. Int. J. Parasitol. Parasites Wildl. 11, 198–206. https://doi.org/10.1016/j.ijppaw.2020.02.009 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 25.

    Bateman, A. J. Intra-sexual selection in Drosophila. Heredity 2, 349–368. https://doi.org/10.1038/hdy.1948.21 (1948).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 26.

    Klein, S. L. & Flanagan, K. L. Sex differences in immune responses. Nat. Rev. Immunol. 16, 626. https://doi.org/10.1038/nri.2016.90 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 27.

    Lemaître, J.-F. et al. Sex differences in adult lifespan and aging rates of mortality across wild mammals. Proc. Natl. Acad. Sci. U.S.A. 117, 8546–8553. https://doi.org/10.1073/pnas.1911999117 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Moore, S. L. & Wilson, K. Parasites as a viability cost of sexual selection in natural populations of mammals. Science 297, 2015–2018. https://doi.org/10.1126/science.1074196 (2002).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 29.

    Giefing-Kröll, C., Berger, P., Lepperdinger, G. & Grubeck-Loebenstein, B. How sex and age affect immune responses, susceptibility to infections, and response to vaccination. Aging Cell 14, 309–321. https://doi.org/10.1111/acel.12326 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    Faas, M. et al. The immune response during the luteal phase of the ovarian cycle: A Th2-type response?. Fertil. Steril. 74, 1008–1013. https://doi.org/10.1016/S0015-0282(00)01553-3 (2000).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 31.

    Murphy, S. P. et al. Interferon gamma in successful pregnancies. Biol. Reprod. 80, 848–859. https://doi.org/10.1095/biolreprod.108.073353 (2009).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Morison, L. et al. Bacterial vaginosis in relation to menstrual cycle, menstrual protection method, and sexual intercourse in rural Gambian women. Sex Transm. Infect 81, 242–247. https://doi.org/10.1136/sti.2004.011684 (2005).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 33.

    Wira, C. R. & Fahey, J. V. A new strategy to understand how HIV infects women: Identification of a window of vulnerability during the menstrual cycle. AIDS 22, 1909–1917. https://doi.org/10.1097/QAD.0b013e3283060ea4 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Raghupathy, R. Th1-type immunity is incompatible with successful pregnancy. Immunol. Today 18, 478–482. https://doi.org/10.1016/s0167-5699(97)01127-4 (1997).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 35.

    Sappenfield, E., Jamieson, D. J. & Kourtis, A. P. Pregnancy and susceptibility to infectious diseases. Infect Dis. Obstet. Gynecol. 752852–752852, 2013. https://doi.org/10.1155/2013/752852 (2013).

    Article 

    Google Scholar 

  • 36.

    Wood, B. M., Watts, D. P., Mitani, J. C. & Langergraber, K. E. Favorable ecological circumstances promote life expectancy in chimpanzees similar to that of human hunter-gatherers. J. Hum. Evol. 105, 41–56. https://doi.org/10.1016/j.jhevol.2017.01.003 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 37.

    Johnson, P. T. J. et al. Living fast and dying of infection: Host life history drives interspecific variation in infection and disease risk. Ecol. Lett. 15, 235–242. https://doi.org/10.1111/j.1461-0248.2011.01730.x (2012).

    Article 
    PubMed 

    Google Scholar 

  • 38.

    Previtali, M. A. et al. Relationship between pace of life and immune responses in wild rodents. Oikos 121, 1483–1492. https://doi.org/10.1111/j.1600-0706.2012.020215.x (2012).

    Article 

    Google Scholar 

  • 39.

    Haigwood, N. & Walker, C. Chimpanzees in Biomedical and Behavioral Research: Assessing the Necessity (eds Bruce M. Altevogt, Diana E. Pankevich, Marilee K. Shelton-Davenport, & Jeffrey P. Kahn) 91–165 (National Academies Press (US), 2011).

  • 40.

    Muehlenbein, M. P. Parasitological analyses of the male chimpanzees (Pan troglodytes schweinfurthii) at Ngogo, Kibale National Park, Uganda. Am. J. Primatol. 65, 167–179. https://doi.org/10.1002/ajp.20106 (2005).

    Article 
    PubMed 

    Google Scholar 

  • 41.

    Gillespie, T. R. et al. Demographic and ecological effects on patterns of parasitism in eastern chimpanzees (Pan troglodytes schweinfurthii) in Gombe National Park, Tanzania. Am. J. Phys. Anthropol. 143, 534–544. https://doi.org/10.1002/ajpa.21348 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Muehlenbein, M. P. & Lewis, C. M. Primate Ecology and Conservation: A Handbook of Techniques (eds E. J. Sterling, N. Bynum, & M. E. Blair) 40–57 (Oxford University Press, 2013).

  • 43.

    Behringer, V., Stevens, J. M. G., Leendertz, F. H., Hohmann, G. & Deschner, T. Validation of a method for the assessment of urinary neopterin levels to monitor health status in non-human-primate species. Front. Physiol. 8, 51–51. https://doi.org/10.3389/fphys.2017.00051 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Higham, J. P. et al. Evaluating noninvasive markers of nonhuman primate immune activation and inflammation. Am. J. Phys. Anthropol. 158, 673–684. https://doi.org/10.1002/ajpa.22821 (2015).

    Article 
    PubMed 

    Google Scholar 

  • 45.

    Berdowska, A. & Zwirska-Korczala, K. Neopterin measurement in clinical diagnosis. J. Clin. Pharm. Ther. 26, 319–329. https://doi.org/10.1046/j.1365-2710.2001.00358.x (2001).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 46.

    Murr, C., Widner, B., Wirleitner, B. & Fuchs, D. Neopterin as a marker for immune system activation. Curr. Drug Metab. 3, 175–187. https://doi.org/10.2174/1389200024605082 (2002).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 47.

    Denz, H. et al. Value of urinary neopterin in the differential diagnosis of bacterial and viral infections. Klin. Wochenschr. 68, 218–222. https://doi.org/10.1007/bf01662720 (1990).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 48.

    Wu, D. F., Behringer, V., Wittig, R. M., Leendertz, F. H. & Deschner, T. Urinary neopterin levels increase and predict survival during a respiratory outbreak in wild chimpanzees (Taï National Park, Côte d’Ivoire). Sci. Rep. 8, 13346–13346. https://doi.org/10.1038/s41598-018-31563-7 (2018).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 49.

    Behringer, V. et al. Elevated neopterin levels in wild, healthy chimpanzees indicate constant investment in unspecific immune system. BMC Zool. 4, 2. https://doi.org/10.1186/s40850-019-0041-1 (2019).

    MathSciNet 
    Article 

    Google Scholar 

  • 50.

    González, N. T. et al. Urinary markers of oxidative stress respond to infection and late-life in wild chimpanzees. PLoS ONE 15, e0238066. https://doi.org/10.1371/journal.pone.0238066 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Negrey, J. D. et al. Demography, life history trade-offs, and the gastrointestinal virome of wild chimpanzees. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190613, https://doi.org/10.1098/rstb.2019.0613 (2020).

  • 52.

    Phillips, S. R. et al. Faecal parasites increase with age but not reproductive effort in wild female chimpanzees. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190614, https://doi.org/10.1098/rstb.2019.0614 (2020).

  • 53.

    Emery Thompson, M. et al. Risk factors for respiratory illness in a community of wild chimpanzees (Pan troglodytes schweinfurthii). R. Soc. Open Sci. 5, 180840. https://doi.org/10.1098/rsos.180840 (2018).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    Dyke, B., Gage, T. B., Alford, P. L., Swenson, B. & Williams-Blangero, S. Model life table for captive chimpanzees. Am. J. Primatol. 37, 25–37. https://doi.org/10.1002/ajp.1350370104 (1995).

    Article 
    PubMed 

    Google Scholar 

  • 55.

    Obanda, V., Omondi, G. P. & Chiyo, P. I. The influence of body mass index, age and sex on inflammatory disease risk in semi-captive Chimpanzees. PLoS ONE 9, e104602–e104602. https://doi.org/10.1371/journal.pone.0104602 (2014).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 56.

    De Nys, H. M. et al. Malaria parasite detection increases during pregnancy in wild chimpanzees. Malar. J. 13, 413. https://doi.org/10.1186/1475-2875-13-413 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 57.

    Deschner, T., Heistermann, M., Hodges, K. & Boesch, C. Timing and probability of ovulation in relation to sex skin swelling in wild West African chimpanzees, Pan troglodytes verus. Anim. Behav. 66, 551–560. https://doi.org/10.1006/anbe.2003.2210 (2003).

    Article 

    Google Scholar 

  • 58.

    Knott, C. D. Field collection and preservation of urine in orangutans and chimpanzees. Trop. Biodivers. 4, 95–102 (1997).

    Google Scholar 

  • 59.

    Fuchs, D. et al. Urinary neopterin concentrations vs total neopterins for clinical utility. Clin. Chem. 35, 2305–2307 (1989).

    CAS 
    Article 

    Google Scholar 

  • 60.

    Anestis, S. F., Breakey, A. A., Beuerlein, M. M. & Bribiescas, R. G. Specific gravity as an alternative to creatinine for estimating urine concentration in captive and wild chimpanzee (Pan troglodytes) samples. Am. J. Primatol. 71, 130–135. https://doi.org/10.1002/ajp.20631 (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 61.

    Emery Thompson, M., Muller, M. N. & Wrangham, R. W. Technical note: Variation in muscle mass in wild chimpanzees: Application of a modified urinary creatinine method. Am. J. Phys. Anthropol. 149, 622–627, https://doi.org/10.1002/ajpa.22157 (2012).

  • 62.

    Miller, R. C. et al. Comparison of specific gravity and creatinine for normalizing urinary reproductive hormone concentrations. Clin. Chem. 50, 924–932. https://doi.org/10.1373/clinchem.2004.032292 (2004).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 63.

    Negrey, J. D. et al. Simultaneous outbreaks of respiratory disease in wild chimpanzees caused by distinct viruses of human origin. Emerg. Microbes Infect. 8, 139–149. https://doi.org/10.1080/22221751.2018.1563456 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 64.

    R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).

  • 65.

    Auzéby, A., Bogdan, A., Krosi, Z. & Touitou, Y. Time-dependence of urinary neopterin, a marker of cellular immune activity. Clin. Chem. 34, 1866–1867. https://doi.org/10.1093/clinchem/34.9.1863 (1988).

    Article 
    PubMed 

    Google Scholar 

  • 66.

    Löhrich, T., Behringer, V., Wittig, R. M., Deschner, T. & Leendertz, F. H. The use of neopterin as a noninvasive marker in monitoring diseases in wild chimpanzees. EcoHealth 15, 792–803. https://doi.org/10.1007/s10393-018-1357-y (2018).

    Article 
    PubMed 

    Google Scholar 

  • 67.

    Wood, S. Generalized Additive Models: An Introduction With R. Vol. 66 (2006).

  • 68.

    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 1, https://doi.org/10.18637/jss.v082.i13 (2017).

  • 69.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 48. https://doi.org/10.18637/jss.v067.i01 (2015).

    Article 

    Google Scholar 

  • 70.

    Stolwijk, A. M., Straatman, H. & Zielhuis, G. A. Studying seasonality by using sine and cosine functions in regression analysis. J. Epidemiol. Commun. Health 53, 235–238. https://doi.org/10.1136/jech.53.4.235 (1999).

    CAS 
    Article 

    Google Scholar 

  • 71.

    Peacock, L. J. & Rogers, C. M. Gestation period and twinning in chimpanzees. Science 129, 959–959. https://doi.org/10.1126/science.129.3354.959 (1959).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 72.

    Caro, T. M. et al. Termination of reproduction in nonhuman and human female primates. Int. J. Primatol. 16, 205–220. https://doi.org/10.1007/BF02735478 (1995).

    Article 

    Google Scholar 

  • 73.

    Box, G. E. P. & Cox, D. R. An analysis of transformations. J. R. Stat. Soc. Ser. B. Stat. Methodol. 26, 211–252, https://doi.org/10.1111/j.2517-6161.1964.tb00553.x (1964).

  • 74.

    Luke, S. G. Evaluating significance in linear mixed-effects models in R. Behav. Res. Methods 49, 1494–1502. https://doi.org/10.3758/s13428-016-0809-y (2017).

    Article 
    PubMed 

    Google Scholar 

  • 75.

    Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142. https://doi.org/10.1111/j.2041-210x.2012.00261.x (2013).

    Article 

    Google Scholar 

  • 76.

    Shapiro, S. S. & Wilk, M. B. An analysis of variance test for normality (complete samples). Biometrika 52, 591–611. https://doi.org/10.1093/biomet/52.3-4.591 (1965).

    MathSciNet 
    Article 
    MATH 

    Google Scholar 

  • 77.

    Wilk, M. B. & Gnanadesikan, R. Probability plotting methods for the analysis of data. Biometrika 55, 1–17. https://doi.org/10.1093/biomet/55.1.1 (1968).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 78.

    Fox, J., Weisberg, S. & Fox, J. An R Companion to Applied Regression. 2nd edn (Sage, 2011).

  • 79.

    Reibnegger, G. et al. Approach to define “normal aging” in man. Immune function, serum lipids, lipoproteins and neopterin levels. Mech. Ageing Dev. 46, 67–82, https://doi.org/10.1016/0047-6374(88)90115-7 (1988).

  • 80.

    Müller, N., Heistermann, M., Strube, C., Schülke, O. & Ostner, J. Age, but not anthelmintic treatment, is associated with urinary neopterin levels in semi-free ranging Barbary macaques. Sci. Rep. 7, 41973–41973. https://doi.org/10.1038/srep41973 (2017).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 81.

    Flatt, T. & Partridge, L. Horizons in the evolution of aging. BMC Biol. 16, 93–93. https://doi.org/10.1186/s12915-018-0562-z (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 82.

    Surbeck, M. et al. Males with a mother living in their group have higher paternity success in bonobos but not chimpanzees. Curr. Biol. 29, R354–R355. https://doi.org/10.1016/j.cub.2019.03.040 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 83.

    Reibnegger, G. et al. Urinary neopterin reflects clinical activity in patients with rheumatoid arthritis. Arthritis Rheum. 29, 1063–1070. https://doi.org/10.1002/art.1780290902 (1986).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 84.

    Eisenhut, M. Neopterin in diagnosis and monitoring of infectious diseases. J. Biomark. 196432–196432, 2013. https://doi.org/10.1155/2013/196432 (2013).

    Article 

    Google Scholar 

  • 85.

    Emery Thompson, M., Muller, M. N. & Wrangham, R. W. The energetics of lactation and the return to fecundity in wild chimpanzees. Behav. Ecol. 23, 1234–1241, https://doi.org/10.1093/beheco/ars107 (2012).

  • 86.

    Muller, M. N. in Behavioral Diversity in Chimpanzees and Bonobos (eds C. Boesch, G. Hohmann, & L. Marchant) 112–124 (Cambridge University Press, 2002).

  • 87.

    Pepper, J. W., Mitani, J. C. & Watts, D. P. General gregariousness and specific social preferences among wild chimpanzees. Int. J. Primatol. 20, 613–632. https://doi.org/10.1023/A:1020760616641 (1999).

    Article 

    Google Scholar 

  • 88.

    Moeller, A. H. et al. Social behavior shapes the chimpanzee pan-microbiome. Sci. Adv. 2, e1500997. https://doi.org/10.1126/sciadv.1500997 (2016).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 89.

    Habig, B. et al. Multi-scale predictors of parasite risk in wild male savanna baboons (Papio cynocephalus). Behav. Ecol. Sociobiol. 73, 134. https://doi.org/10.1007/s00265-019-2748-y (2019).

    Article 

    Google Scholar 

  • 90.

    Foo, Y. Z., Nakagawa, S., Rhodes, G. & Simmons, L. W. The effects of sex hormones on immune function: A meta-analysis. Biol. Rev. 92, 551–571. https://doi.org/10.1111/brv.12243 (2017).

    Article 
    PubMed 

    Google Scholar 

  • 91.

    Franceschi, C. et al. Inflammaging and anti-inflammaging: A systemic perspective on aging and longevity emerged from studies in humans. Mech. Ageing Dev. 128, 92–105. https://doi.org/10.1016/j.mad.2006.11.016 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 92.

    Brod, S. A. Unregulated inflammation shortens human functional longevity. Inflamm. Res. 49, 561–570. https://doi.org/10.1007/s000110050632 (2000).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 93.

    Gurven, M. & Kaplan, H. Longevity among hunter-gatherers: A cross-cultural examination. Popul. Dev. Rev. 33, 321–365 (2007).

    Article 

    Google Scholar 

  • 94.

    Bichler, A. et al. Measurement of urinary neopterin in normal pregnant and non-pregnant women and in women with benign and malignant genital tract neoplasms. Arch. Gynecol. 233, 121–130. https://doi.org/10.1007/BF02114788 (1983).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 95.

    Deschner, T., Heistermann, M., Hodges, K. & Boesch, C. Female sexual swelling size, timing of ovulation, and male behavior in wild West African chimpanzees. Horm. Behav. 46, 204–215. https://doi.org/10.1016/j.yhbeh.2004.03.013 (2004).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 96.

    Matsumoto-Oda, A. Mahale chimpanzees: Grouping patterns and cycling females. Am. J. Primatol. 47, 197–207. https://doi.org/10.1002/(sici)1098-2345(1999)47:3%3c197::aid-ajp2%3e3.0.co;2-3 (1999).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 97.

    Relloso, M. et al. Estradiol impairs the Th17 immune response against Candida albicans. J. Leukoc. Biol. 91, 159–165. https://doi.org/10.1189/jlb.1110645 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 98.

    Muller, M. N., Kahlenberg, S. M., Thompson, M. E. & Wrangham, R. W. Male coercion and the costs of promiscuous mating for female chimpanzees. Proc. Biol. Sci. 274, 1009–1014. https://doi.org/10.1098/rspb.2006.0206 (2007).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 99.

    Uyar, I. S. et al. Evaluation of systemic inflammatory response in cardiovascular surgery via interleukin-6, interleukin-8, and neopterin. Heart Surg. Forum 17, E13-17. https://doi.org/10.1532/hsf98.2013267 (2014).

    Article 
    PubMed 

    Google Scholar 

  • 100.

    Jerin, A. et al. Neopterin – An early marker of surgical stress and hypoxic reperfusion damage during liver surgery. Clin. Chem. Lab. Med. 40, 663–666. https://doi.org/10.1515/CCLM.2002.113 (2002).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 101.

    Baxter-Parker, G. et al. Knee replacement surgery significantly elevates the urinary inflammatory biomarkers neopterin and 7,8-dihydroneopterin. Clin. Biochem. 63, 39–45. https://doi.org/10.1016/j.clinbiochem.2018.11.002 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 102.

    Higham, J. P., Stahl-Hennig, C. & Heistermann, M. Urinary suPAR: A non-invasive biomarker of infection and tissue inflammation for use in studies of large free-ranging mammals. R. Soc. Open Sci. 7, 191825–191825. https://doi.org/10.1098/rsos.191825 (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 103.

    Boyunağa, H. et al. Urinary neopterin levels in the different stages of pregnancy. Gynecol. Obstet. Invest. 59, 171–174. https://doi.org/10.1159/000083748 (2005).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 104.

    Oleszczuk, J., Wawrzycka, B. & Maj, J. G. Interleukin-6 and neopterin levels in serum of patients with preterm labour with and without infection. Eur. J. Obstet. Gynecol. Reprod. Biol. 74, 27–30. https://doi.org/10.1016/S0301-2115(97)00083-3 (1997).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 105.

    Kaleli, I. et al. Serum levels of neopterin and interleukin-2 receptor in women with severe preeclampsia. J. Clin. Lab Anal. 19, 36–39. https://doi.org/10.1002/jcla.20053 (2005).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 106.

    Sencan, H., Keskin, N. & Khatib, G. The role of neopterin and anti-Mullerian hormone in unexplained recurrent pregnancy loss – A case-control study. J. Obstet. Gynaecol. 39, 996–999. https://doi.org/10.1080/01443615.2019.1586850 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 107.

    Potts, K. B., Watts, D. P. & Wrangham, R. W. Comparative feeding ecology of two communities of chimpanzees (Pan troglodytes) in Kibale National Park, Uganda. Int. J. Primatol. 32, 669–690. https://doi.org/10.1007/s10764-011-9494-y (2011).

    Article 

    Google Scholar 

  • 108.

    Emery Thompson, M., Muller, M. N., Wrangham, R. W., Lwanga, J. S. & Potts, K. B. Urinary C-peptide tracks seasonal and individual variation in energy balance in wild chimpanzees. Horm. Behav. 55, 299–305, https://doi.org/10.1016/j.yhbeh.2008.11.005 (2009).

  • 109.

    Lochmiller, R. L. & Deerenberg, C. Trade-offs in evolutionary immunology: just what is the cost of immunity?. Oikos 88, 87–98. https://doi.org/10.1034/j.1600-0706.2000.880110.x (2000).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Q&A: Vivienne Sze on crossing the hardware-software divide for efficient artificial intelligence

    China’s transition to electric vehicles