Sadd, B. M. & Schmid-Hempel, P. Principles of ecological immunology. Evol. Appl. 2, 113–121. https://doi.org/10.1111/j.1752-4571.2008.00057.x (2009).
Google Scholar
Kew, C. et al. Evolutionarily conserved regulation of immunity by the splicing factor RNP-6/PUF60. eLife 9, e57591, https://doi.org/10.7554/eLife.57591 (2020).
Jurk, D. et al. Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nat. Commun. 2, 4172–4172. https://doi.org/10.1038/ncomms5172 (2014).
Google Scholar
Lee, K. A. Linking immune defenses and life history at the levels of the individual and the species. Integr. Comp. Biol. 46, 1000–1015. https://doi.org/10.1093/icb/icl049 (2006).
Google Scholar
Demas, G. E. & Nelson, R. J. Ecoimmunology. (Oxford University Press, 2012).
Brock, P. M., Murdock, C. C. & Martin, L. B. The history of ecoimmunology and its integration with disease ecology. Integr. Comp. Biol. 54, 353–362. https://doi.org/10.1093/icb/icu046 (2014).
Google Scholar
Gurven, M., Kaplan, H., Winking, J., Finch, C. & Crimmins, E. M. Aging and inflammation in two epidemiological worlds. J. Gerontol. A Biol. Sci. Med. Sci. 63, 196–199, https://doi.org/10.1093/gerona/63.2.196 (2008).
Blackwell, A. D. et al. Immune function in Amazonian horticulturalists. Ann. Hum. Biol. 43, 382–396. https://doi.org/10.1080/03014460.2016.1189963 (2016).
Google Scholar
Blackwell, A. D., Martin, M., Kaplan, H. & Gurven, M. Antagonism between two intestinal parasites in humans: the importance of co-infection for infection risk and recovery dynamics. Proc. Biol. Sci. 280, 20131671–20131671. https://doi.org/10.1098/rspb.2013.1671 (2013).
Google Scholar
Vasunilashorn, S. et al. Blood lipids, infection, and inflammatory markers in the Tsimane of Bolivia. Am. J. Hum. Biol. 22, 731–740. https://doi.org/10.1002/ajhb.21074 (2010).
Google Scholar
Kraft, T. S. et al. Multi-system physiological dysregulation and ageing in a subsistence population. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 375, 20190610. https://doi.org/10.1098/rstb.2019.0610 (2020).
Google Scholar
Dansereau, G. et al. Conservation of physiological dysregulation signatures of aging across primates. Aging Cell 18, e12925–e12925. https://doi.org/10.1111/acel.12925 (2019).
Google Scholar
Birkett, L. P. & Newton-Fisher, N. E. How abnormal is the behaviour of captive, zoo-living chimpanzees?. PLoS ONE 6, e20101. https://doi.org/10.1371/journal.pone.0020101 (2011).
Google Scholar
Lewton, K. L. The effects of captive versus wild rearing environments on long bone articular surfaces in common chimpanzees (Pan troglodytes). PeerJ 5, e3668–e3668. https://doi.org/10.7717/peerj.3668 (2017).
Google Scholar
Atsalis, S. & Videan, E. Reproductive aging in captive and wild common chimpanzees: Factors influencing the rate of follicular depletion. Am. J. Primatol. 71, 271–282. https://doi.org/10.1002/ajp.20650 (2009).
Google Scholar
Michaud, M. et al. Proinflammatory cytokines, aging, and age-related diseases. J. Am. Med. Dir. Assoc. 14, 877–882. https://doi.org/10.1016/j.jamda.2013.05.009 (2013).
Google Scholar
Ian, D. G. The effect of aging on susceptibility to infection. Rev. Infect. Dis. 2, 801–810. https://doi.org/10.1093/clinids/2.5.801 (1980).
Google Scholar
Monti, D., Ostan, R., Borelli, V., Castellani, G. & Franceschi, C. Inflammaging and human longevity in the omics era. Mech. Ageing Dev. 165, 129–138. https://doi.org/10.1016/j.mad.2016.12.008 (2017).
Google Scholar
Walker, E. M. et al. Inflammaging phenotype in rhesus macaques is associated with a decline in epithelial barrier-protective functions and increased pro-inflammatory function in CD161-expressing cells. Geroscience 41, 739–757. https://doi.org/10.1007/s11357-019-00099-7 (2019).
Google Scholar
Baylis, D., Bartlett, D. B., Patel, H. P. & Roberts, H. C. Understanding how we age: insights into inflammaging. Longev. Healthspan 2, 8–8. https://doi.org/10.1186/2046-2395-2-8 (2013).
Google Scholar
Peters, A., Delhey, K., Nakagawa, S., Aulsebrook, A. & Verhulst, S. Immunosenescence in wild animals: Meta-analysis and outlook. Ecol. Lett. 22, 1709–1722. https://doi.org/10.1111/ele.13343 (2019).
Google Scholar
Cheynel, L. et al. Immunosenescence patterns differ between populations but not between sexes in a long-lived mammal. Sci. Rep. 7, 13700–13700. https://doi.org/10.1038/s41598-017-13686-5 (2017).
Google Scholar
Nussey, D. H., Watt, K., Pilkington, J. G., Zamoyska, R. & McNeilly, T. N. Age-related variation in immunity in a wild mammal population. Aging Cell 11, 178–180. https://doi.org/10.1111/j.1474-9726.2011.00771.x (2012).
Google Scholar
Dibakou, S. E. et al. Ecological, parasitological and individual determinants of plasma neopterin levels in a natural mandrill population. Int. J. Parasitol. Parasites Wildl. 11, 198–206. https://doi.org/10.1016/j.ijppaw.2020.02.009 (2020).
Google Scholar
Bateman, A. J. Intra-sexual selection in Drosophila. Heredity 2, 349–368. https://doi.org/10.1038/hdy.1948.21 (1948).
Google Scholar
Klein, S. L. & Flanagan, K. L. Sex differences in immune responses. Nat. Rev. Immunol. 16, 626. https://doi.org/10.1038/nri.2016.90 (2016).
Google Scholar
Lemaître, J.-F. et al. Sex differences in adult lifespan and aging rates of mortality across wild mammals. Proc. Natl. Acad. Sci. U.S.A. 117, 8546–8553. https://doi.org/10.1073/pnas.1911999117 (2020).
Google Scholar
Moore, S. L. & Wilson, K. Parasites as a viability cost of sexual selection in natural populations of mammals. Science 297, 2015–2018. https://doi.org/10.1126/science.1074196 (2002).
Google Scholar
Giefing-Kröll, C., Berger, P., Lepperdinger, G. & Grubeck-Loebenstein, B. How sex and age affect immune responses, susceptibility to infections, and response to vaccination. Aging Cell 14, 309–321. https://doi.org/10.1111/acel.12326 (2015).
Google Scholar
Faas, M. et al. The immune response during the luteal phase of the ovarian cycle: A Th2-type response?. Fertil. Steril. 74, 1008–1013. https://doi.org/10.1016/S0015-0282(00)01553-3 (2000).
Google Scholar
Murphy, S. P. et al. Interferon gamma in successful pregnancies. Biol. Reprod. 80, 848–859. https://doi.org/10.1095/biolreprod.108.073353 (2009).
Google Scholar
Morison, L. et al. Bacterial vaginosis in relation to menstrual cycle, menstrual protection method, and sexual intercourse in rural Gambian women. Sex Transm. Infect 81, 242–247. https://doi.org/10.1136/sti.2004.011684 (2005).
Google Scholar
Wira, C. R. & Fahey, J. V. A new strategy to understand how HIV infects women: Identification of a window of vulnerability during the menstrual cycle. AIDS 22, 1909–1917. https://doi.org/10.1097/QAD.0b013e3283060ea4 (2008).
Google Scholar
Raghupathy, R. Th1-type immunity is incompatible with successful pregnancy. Immunol. Today 18, 478–482. https://doi.org/10.1016/s0167-5699(97)01127-4 (1997).
Google Scholar
Sappenfield, E., Jamieson, D. J. & Kourtis, A. P. Pregnancy and susceptibility to infectious diseases. Infect Dis. Obstet. Gynecol. 752852–752852, 2013. https://doi.org/10.1155/2013/752852 (2013).
Google Scholar
Wood, B. M., Watts, D. P., Mitani, J. C. & Langergraber, K. E. Favorable ecological circumstances promote life expectancy in chimpanzees similar to that of human hunter-gatherers. J. Hum. Evol. 105, 41–56. https://doi.org/10.1016/j.jhevol.2017.01.003 (2017).
Google Scholar
Johnson, P. T. J. et al. Living fast and dying of infection: Host life history drives interspecific variation in infection and disease risk. Ecol. Lett. 15, 235–242. https://doi.org/10.1111/j.1461-0248.2011.01730.x (2012).
Google Scholar
Previtali, M. A. et al. Relationship between pace of life and immune responses in wild rodents. Oikos 121, 1483–1492. https://doi.org/10.1111/j.1600-0706.2012.020215.x (2012).
Google Scholar
Haigwood, N. & Walker, C. Chimpanzees in Biomedical and Behavioral Research: Assessing the Necessity (eds Bruce M. Altevogt, Diana E. Pankevich, Marilee K. Shelton-Davenport, & Jeffrey P. Kahn) 91–165 (National Academies Press (US), 2011).
Muehlenbein, M. P. Parasitological analyses of the male chimpanzees (Pan troglodytes schweinfurthii) at Ngogo, Kibale National Park, Uganda. Am. J. Primatol. 65, 167–179. https://doi.org/10.1002/ajp.20106 (2005).
Google Scholar
Gillespie, T. R. et al. Demographic and ecological effects on patterns of parasitism in eastern chimpanzees (Pan troglodytes schweinfurthii) in Gombe National Park, Tanzania. Am. J. Phys. Anthropol. 143, 534–544. https://doi.org/10.1002/ajpa.21348 (2010).
Google Scholar
Muehlenbein, M. P. & Lewis, C. M. Primate Ecology and Conservation: A Handbook of Techniques (eds E. J. Sterling, N. Bynum, & M. E. Blair) 40–57 (Oxford University Press, 2013).
Behringer, V., Stevens, J. M. G., Leendertz, F. H., Hohmann, G. & Deschner, T. Validation of a method for the assessment of urinary neopterin levels to monitor health status in non-human-primate species. Front. Physiol. 8, 51–51. https://doi.org/10.3389/fphys.2017.00051 (2017).
Google Scholar
Higham, J. P. et al. Evaluating noninvasive markers of nonhuman primate immune activation and inflammation. Am. J. Phys. Anthropol. 158, 673–684. https://doi.org/10.1002/ajpa.22821 (2015).
Google Scholar
Berdowska, A. & Zwirska-Korczala, K. Neopterin measurement in clinical diagnosis. J. Clin. Pharm. Ther. 26, 319–329. https://doi.org/10.1046/j.1365-2710.2001.00358.x (2001).
Google Scholar
Murr, C., Widner, B., Wirleitner, B. & Fuchs, D. Neopterin as a marker for immune system activation. Curr. Drug Metab. 3, 175–187. https://doi.org/10.2174/1389200024605082 (2002).
Google Scholar
Denz, H. et al. Value of urinary neopterin in the differential diagnosis of bacterial and viral infections. Klin. Wochenschr. 68, 218–222. https://doi.org/10.1007/bf01662720 (1990).
Google Scholar
Wu, D. F., Behringer, V., Wittig, R. M., Leendertz, F. H. & Deschner, T. Urinary neopterin levels increase and predict survival during a respiratory outbreak in wild chimpanzees (Taï National Park, Côte d’Ivoire). Sci. Rep. 8, 13346–13346. https://doi.org/10.1038/s41598-018-31563-7 (2018).
Google Scholar
Behringer, V. et al. Elevated neopterin levels in wild, healthy chimpanzees indicate constant investment in unspecific immune system. BMC Zool. 4, 2. https://doi.org/10.1186/s40850-019-0041-1 (2019).
Google Scholar
González, N. T. et al. Urinary markers of oxidative stress respond to infection and late-life in wild chimpanzees. PLoS ONE 15, e0238066. https://doi.org/10.1371/journal.pone.0238066 (2020).
Google Scholar
Negrey, J. D. et al. Demography, life history trade-offs, and the gastrointestinal virome of wild chimpanzees. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190613, https://doi.org/10.1098/rstb.2019.0613 (2020).
Phillips, S. R. et al. Faecal parasites increase with age but not reproductive effort in wild female chimpanzees. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190614, https://doi.org/10.1098/rstb.2019.0614 (2020).
Emery Thompson, M. et al. Risk factors for respiratory illness in a community of wild chimpanzees (Pan troglodytes schweinfurthii). R. Soc. Open Sci. 5, 180840. https://doi.org/10.1098/rsos.180840 (2018).
Google Scholar
Dyke, B., Gage, T. B., Alford, P. L., Swenson, B. & Williams-Blangero, S. Model life table for captive chimpanzees. Am. J. Primatol. 37, 25–37. https://doi.org/10.1002/ajp.1350370104 (1995).
Google Scholar
Obanda, V., Omondi, G. P. & Chiyo, P. I. The influence of body mass index, age and sex on inflammatory disease risk in semi-captive Chimpanzees. PLoS ONE 9, e104602–e104602. https://doi.org/10.1371/journal.pone.0104602 (2014).
Google Scholar
De Nys, H. M. et al. Malaria parasite detection increases during pregnancy in wild chimpanzees. Malar. J. 13, 413. https://doi.org/10.1186/1475-2875-13-413 (2014).
Google Scholar
Deschner, T., Heistermann, M., Hodges, K. & Boesch, C. Timing and probability of ovulation in relation to sex skin swelling in wild West African chimpanzees, Pan troglodytes verus. Anim. Behav. 66, 551–560. https://doi.org/10.1006/anbe.2003.2210 (2003).
Google Scholar
Knott, C. D. Field collection and preservation of urine in orangutans and chimpanzees. Trop. Biodivers. 4, 95–102 (1997).
Fuchs, D. et al. Urinary neopterin concentrations vs total neopterins for clinical utility. Clin. Chem. 35, 2305–2307 (1989).
Google Scholar
Anestis, S. F., Breakey, A. A., Beuerlein, M. M. & Bribiescas, R. G. Specific gravity as an alternative to creatinine for estimating urine concentration in captive and wild chimpanzee (Pan troglodytes) samples. Am. J. Primatol. 71, 130–135. https://doi.org/10.1002/ajp.20631 (2009).
Google Scholar
Emery Thompson, M., Muller, M. N. & Wrangham, R. W. Technical note: Variation in muscle mass in wild chimpanzees: Application of a modified urinary creatinine method. Am. J. Phys. Anthropol. 149, 622–627, https://doi.org/10.1002/ajpa.22157 (2012).
Miller, R. C. et al. Comparison of specific gravity and creatinine for normalizing urinary reproductive hormone concentrations. Clin. Chem. 50, 924–932. https://doi.org/10.1373/clinchem.2004.032292 (2004).
Google Scholar
Negrey, J. D. et al. Simultaneous outbreaks of respiratory disease in wild chimpanzees caused by distinct viruses of human origin. Emerg. Microbes Infect. 8, 139–149. https://doi.org/10.1080/22221751.2018.1563456 (2019).
Google Scholar
R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).
Auzéby, A., Bogdan, A., Krosi, Z. & Touitou, Y. Time-dependence of urinary neopterin, a marker of cellular immune activity. Clin. Chem. 34, 1866–1867. https://doi.org/10.1093/clinchem/34.9.1863 (1988).
Google Scholar
Löhrich, T., Behringer, V., Wittig, R. M., Deschner, T. & Leendertz, F. H. The use of neopterin as a noninvasive marker in monitoring diseases in wild chimpanzees. EcoHealth 15, 792–803. https://doi.org/10.1007/s10393-018-1357-y (2018).
Google Scholar
Wood, S. Generalized Additive Models: An Introduction With R. Vol. 66 (2006).
Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 1, https://doi.org/10.18637/jss.v082.i13 (2017).
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 48. https://doi.org/10.18637/jss.v067.i01 (2015).
Google Scholar
Stolwijk, A. M., Straatman, H. & Zielhuis, G. A. Studying seasonality by using sine and cosine functions in regression analysis. J. Epidemiol. Commun. Health 53, 235–238. https://doi.org/10.1136/jech.53.4.235 (1999).
Google Scholar
Peacock, L. J. & Rogers, C. M. Gestation period and twinning in chimpanzees. Science 129, 959–959. https://doi.org/10.1126/science.129.3354.959 (1959).
Google Scholar
Caro, T. M. et al. Termination of reproduction in nonhuman and human female primates. Int. J. Primatol. 16, 205–220. https://doi.org/10.1007/BF02735478 (1995).
Google Scholar
Box, G. E. P. & Cox, D. R. An analysis of transformations. J. R. Stat. Soc. Ser. B. Stat. Methodol. 26, 211–252, https://doi.org/10.1111/j.2517-6161.1964.tb00553.x (1964).
Luke, S. G. Evaluating significance in linear mixed-effects models in R. Behav. Res. Methods 49, 1494–1502. https://doi.org/10.3758/s13428-016-0809-y (2017).
Google Scholar
Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142. https://doi.org/10.1111/j.2041-210x.2012.00261.x (2013).
Google Scholar
Shapiro, S. S. & Wilk, M. B. An analysis of variance test for normality (complete samples). Biometrika 52, 591–611. https://doi.org/10.1093/biomet/52.3-4.591 (1965).
Google Scholar
Wilk, M. B. & Gnanadesikan, R. Probability plotting methods for the analysis of data. Biometrika 55, 1–17. https://doi.org/10.1093/biomet/55.1.1 (1968).
Google Scholar
Fox, J., Weisberg, S. & Fox, J. An R Companion to Applied Regression. 2nd edn (Sage, 2011).
Reibnegger, G. et al. Approach to define “normal aging” in man. Immune function, serum lipids, lipoproteins and neopterin levels. Mech. Ageing Dev. 46, 67–82, https://doi.org/10.1016/0047-6374(88)90115-7 (1988).
Müller, N., Heistermann, M., Strube, C., Schülke, O. & Ostner, J. Age, but not anthelmintic treatment, is associated with urinary neopterin levels in semi-free ranging Barbary macaques. Sci. Rep. 7, 41973–41973. https://doi.org/10.1038/srep41973 (2017).
Google Scholar
Flatt, T. & Partridge, L. Horizons in the evolution of aging. BMC Biol. 16, 93–93. https://doi.org/10.1186/s12915-018-0562-z (2018).
Google Scholar
Surbeck, M. et al. Males with a mother living in their group have higher paternity success in bonobos but not chimpanzees. Curr. Biol. 29, R354–R355. https://doi.org/10.1016/j.cub.2019.03.040 (2019).
Google Scholar
Reibnegger, G. et al. Urinary neopterin reflects clinical activity in patients with rheumatoid arthritis. Arthritis Rheum. 29, 1063–1070. https://doi.org/10.1002/art.1780290902 (1986).
Google Scholar
Eisenhut, M. Neopterin in diagnosis and monitoring of infectious diseases. J. Biomark. 196432–196432, 2013. https://doi.org/10.1155/2013/196432 (2013).
Google Scholar
Emery Thompson, M., Muller, M. N. & Wrangham, R. W. The energetics of lactation and the return to fecundity in wild chimpanzees. Behav. Ecol. 23, 1234–1241, https://doi.org/10.1093/beheco/ars107 (2012).
Muller, M. N. in Behavioral Diversity in Chimpanzees and Bonobos (eds C. Boesch, G. Hohmann, & L. Marchant) 112–124 (Cambridge University Press, 2002).
Pepper, J. W., Mitani, J. C. & Watts, D. P. General gregariousness and specific social preferences among wild chimpanzees. Int. J. Primatol. 20, 613–632. https://doi.org/10.1023/A:1020760616641 (1999).
Google Scholar
Moeller, A. H. et al. Social behavior shapes the chimpanzee pan-microbiome. Sci. Adv. 2, e1500997. https://doi.org/10.1126/sciadv.1500997 (2016).
Google Scholar
Habig, B. et al. Multi-scale predictors of parasite risk in wild male savanna baboons (Papio cynocephalus). Behav. Ecol. Sociobiol. 73, 134. https://doi.org/10.1007/s00265-019-2748-y (2019).
Google Scholar
Foo, Y. Z., Nakagawa, S., Rhodes, G. & Simmons, L. W. The effects of sex hormones on immune function: A meta-analysis. Biol. Rev. 92, 551–571. https://doi.org/10.1111/brv.12243 (2017).
Google Scholar
Franceschi, C. et al. Inflammaging and anti-inflammaging: A systemic perspective on aging and longevity emerged from studies in humans. Mech. Ageing Dev. 128, 92–105. https://doi.org/10.1016/j.mad.2006.11.016 (2007).
Google Scholar
Brod, S. A. Unregulated inflammation shortens human functional longevity. Inflamm. Res. 49, 561–570. https://doi.org/10.1007/s000110050632 (2000).
Google Scholar
Gurven, M. & Kaplan, H. Longevity among hunter-gatherers: A cross-cultural examination. Popul. Dev. Rev. 33, 321–365 (2007).
Google Scholar
Bichler, A. et al. Measurement of urinary neopterin in normal pregnant and non-pregnant women and in women with benign and malignant genital tract neoplasms. Arch. Gynecol. 233, 121–130. https://doi.org/10.1007/BF02114788 (1983).
Google Scholar
Deschner, T., Heistermann, M., Hodges, K. & Boesch, C. Female sexual swelling size, timing of ovulation, and male behavior in wild West African chimpanzees. Horm. Behav. 46, 204–215. https://doi.org/10.1016/j.yhbeh.2004.03.013 (2004).
Google Scholar
Matsumoto-Oda, A. Mahale chimpanzees: Grouping patterns and cycling females. Am. J. Primatol. 47, 197–207. https://doi.org/10.1002/(sici)1098-2345(1999)47:3%3c197::aid-ajp2%3e3.0.co;2-3 (1999).
Google Scholar
Relloso, M. et al. Estradiol impairs the Th17 immune response against Candida albicans. J. Leukoc. Biol. 91, 159–165. https://doi.org/10.1189/jlb.1110645 (2012).
Google Scholar
Muller, M. N., Kahlenberg, S. M., Thompson, M. E. & Wrangham, R. W. Male coercion and the costs of promiscuous mating for female chimpanzees. Proc. Biol. Sci. 274, 1009–1014. https://doi.org/10.1098/rspb.2006.0206 (2007).
Google Scholar
Uyar, I. S. et al. Evaluation of systemic inflammatory response in cardiovascular surgery via interleukin-6, interleukin-8, and neopterin. Heart Surg. Forum 17, E13-17. https://doi.org/10.1532/hsf98.2013267 (2014).
Google Scholar
Jerin, A. et al. Neopterin – An early marker of surgical stress and hypoxic reperfusion damage during liver surgery. Clin. Chem. Lab. Med. 40, 663–666. https://doi.org/10.1515/CCLM.2002.113 (2002).
Google Scholar
Baxter-Parker, G. et al. Knee replacement surgery significantly elevates the urinary inflammatory biomarkers neopterin and 7,8-dihydroneopterin. Clin. Biochem. 63, 39–45. https://doi.org/10.1016/j.clinbiochem.2018.11.002 (2019).
Google Scholar
Higham, J. P., Stahl-Hennig, C. & Heistermann, M. Urinary suPAR: A non-invasive biomarker of infection and tissue inflammation for use in studies of large free-ranging mammals. R. Soc. Open Sci. 7, 191825–191825. https://doi.org/10.1098/rsos.191825 (2020).
Google Scholar
Boyunağa, H. et al. Urinary neopterin levels in the different stages of pregnancy. Gynecol. Obstet. Invest. 59, 171–174. https://doi.org/10.1159/000083748 (2005).
Google Scholar
Oleszczuk, J., Wawrzycka, B. & Maj, J. G. Interleukin-6 and neopterin levels in serum of patients with preterm labour with and without infection. Eur. J. Obstet. Gynecol. Reprod. Biol. 74, 27–30. https://doi.org/10.1016/S0301-2115(97)00083-3 (1997).
Google Scholar
Kaleli, I. et al. Serum levels of neopterin and interleukin-2 receptor in women with severe preeclampsia. J. Clin. Lab Anal. 19, 36–39. https://doi.org/10.1002/jcla.20053 (2005).
Google Scholar
Sencan, H., Keskin, N. & Khatib, G. The role of neopterin and anti-Mullerian hormone in unexplained recurrent pregnancy loss – A case-control study. J. Obstet. Gynaecol. 39, 996–999. https://doi.org/10.1080/01443615.2019.1586850 (2019).
Google Scholar
Potts, K. B., Watts, D. P. & Wrangham, R. W. Comparative feeding ecology of two communities of chimpanzees (Pan troglodytes) in Kibale National Park, Uganda. Int. J. Primatol. 32, 669–690. https://doi.org/10.1007/s10764-011-9494-y (2011).
Google Scholar
Emery Thompson, M., Muller, M. N., Wrangham, R. W., Lwanga, J. S. & Potts, K. B. Urinary C-peptide tracks seasonal and individual variation in energy balance in wild chimpanzees. Horm. Behav. 55, 299–305, https://doi.org/10.1016/j.yhbeh.2008.11.005 (2009).
Lochmiller, R. L. & Deerenberg, C. Trade-offs in evolutionary immunology: just what is the cost of immunity?. Oikos 88, 87–98. https://doi.org/10.1034/j.1600-0706.2000.880110.x (2000).
Google Scholar
Source: Ecology - nature.com