in

Use of timelapse photography to determine flower opening time and pattern in banana (Musa spp.) for efficient hand pollination

In banana, bract opening behavior depends on the time of the day, the position of the bract, and sex of the flowers enclosed by the bract. Bract opening is a continuous process especially in the first bracts subtending female flowers of some genotypes; it starts in the evening and continues through the night (Table 1). In cases where bracts did not fully open, the process was halted early morning and resumed in the evening. It is therefore not obvious to judge whether such bracts have opened or not. However, opening is permanent as opposed to some plant species which open and close their flowers at specific times. Ssebuliba et al.16 considered East African Highland bananas ready for pollination when bracts were half way open with stigmas having a creamy white appearance. According to observations made in the current study, it can be said that bract lifting is indicative of flower opening thus pollination can start.

Bract lift and bract roll seemed to be a response of a certain light quality6, the response time and speed are genotype dependent. Finger curling also seems to be triggered by the same factors that lead to bract opening. Bract opening and finger curling are likely to be a response of changes in turgor pressures in cells that lead to tissues being pushed in a given direction17. This was evident with upward movement of the inflorescence from the horizontal-pendent toward the horizontal position in the evening and downward movement towards the pendent position by mid-morning. These movements were genotype dependent and small, maximum oscillation was about 10˚. A similar pattern was observed for leaf folding to influence relative canopy cover18.

Generally, bracts subtending female flower lifted and started rolling earlier than those subtending male flowers. However, male flowers ended opening before female flowers, resulting in faster bract opening for male flowers (Table 1 and t-test). This might be due to the smaller bract size of male flowers (Fig. 1) or an adaption for female flowers to find male flowers open with ready pollen. Consequently, the strategy ensures maximum pollination success and survival of the Musa spp. Studies have revealed that pollen viability reduces with time after flower opening1. This is in agreement that controlled pollination should be done between 07:00 and 10:00 h7. In comparison to lilies, some flowers were observed also to open starting at 17:00 h while others open during day. Both nocturnal and diurnal pollinators were found to be active flower visitors19. This implies that pollination in banana can start in the evening as long as bracts for parents in the cross of interest lift in time.

In Musa itinerans, two nectar production peaks were found, that is between 08:00 to 12:00 h and 20:00 to 24:00 h20. This maybe a close depiction of what happens in edible bananas thus emphasizing the potential importance of diurnal and nocturnal pollinators. Bats, bees, and birds were found to be among the most important pollinators of bananas at Onne, Nigeria10. However, natural pollinators were not the main focus of the study though they are good indicators of when stigmas might be highly receptive. Since nectar quality and quantity varies between different agro-ecologies and seasons21, flower visitations and seed set are also expected to vary accordingly. Different agro-ecologies are also expected to experience variable BOTs due to variable solar radiation. Likewise the different growing seasons (rainy and dry) might also affect BOTs and therefore seed set22. However, a comparison of time from sunrise to beginning of bract lift of Musa AAA Cavendish cultivars in a glasshouse and M. basjoo in the garden in Belgium revealed no significant difference6. But comparison of bract curling time in Mchare in Arusha with short days and Cavendish cultivars in a glasshouse in Belgium with long days in summer, there was early curling in the glasshouse. However, bract lift time may be a better event to use for comparison than bract curling or rolling time.

Bracts of both female and male flowers of different genotypes completed opening at different times and this may be partly the reason for variable pollen viability and stigma receptivity (Table 1). Female flowers that finish opening much earlier may set less seed compared to those that finish opening closer to the routine time of hand pollination between 07:00 and 10:00 h. Conversely, male flowers that are ready shortly before the time of hand pollination are expected to have higher pollen viability. This probably explains the high fertility of ‘Calcutta 4’ as it finished opening at 06:30 h. Some male flowers like those of Matooke finished opening as early as 21:54 h (Table 1) and are expected to have pollen with low viability at the time it is measured the next day.

All observed inflorescences opened one female bract on the first day, increasing to multiple bracts opening on subsequent days (Fig. 2). One to three bracts subtending female flowers were observed to open per day from the second bract position of the inflorescence. The pattern of opening took on a hyperbolic shape with up to four bracts opening on the fourth day in the midsection of the inflorescence. For hand pollination, more clusters are therefore expected to be pollinated per day during bract opening in the mid-section of the inflorescence. The different clusters of female flowers that open on the same day are likely to have stigmas with varying receptivity. The darker appearance of stigmas of former clusters compared to creamy stigmas in latter clusters reflects higher receptivity in the latter2. This may explain why some clusters set more seed especially in the mid-section of a seemingly fertile inflorescence.

Upon complete opening of female and transitional bracts, inflorescences went into a pause period before male flowers opened (Table 2). In additional to spatial separation of flowers, this is temporal separation to promote cross pollination in banana. However, temporal separation of male and female flowers is not very effective for genotypes that had less than 24 h of separation. With aid of crawling insects, self-pollination may happen between the last female cluster and the first male cluster as stigmas are likely to be receptive for more than one day. Once male flowers started opening, one bract opened per day and occasionally two bracts were observed to open on the same day. For highly fertile genotypes like ‘Calcutta 4’, ample pollen is produced to pollinate many female flowers. Male flowers are also produced throughout the inflorescence growth period which ensures constant supply of pollen especially for controlled hand pollination. Averages of bracts subtending male flowers opening per day could not be calculated as there were two to three observed bracts subtending male flowers for most genotypes.

It appears that proximal bracts subtending female flowers are less stimulated to lift and roll compared to distal bracts subtending female flowers and all bracts subtending male flowers. This was revealed by low vigour of bract lift and the small angle of lift at 08:00 h especially in the first female flower cluster (Figs. 2, 3). The bract angle of lift increases from proximal to distal end and this has been linked to reduced fertility in proximal clusters2. But it may not be the case since highly female (in all clusters) and male fertile ‘Calcutta 4’ showed the same pattern as edible bananas. The high R2 for female bract roll scores compared to bracts subtending male flowers was a result of more bracts used to calculate averages for bracts subtending female flowers compared to bracts subtending male flowers (Fig. 3). For bracts subtending male flowers, two to three bracts were observed for most genotypes thus the first three data points were close to the trend line. Since the number of female clusters varies, reducing number of data points were used to calculate average bract lift angles in the distal end or larger inflorescences. Besides, bract lift angles of some clusters could not be measured because of obscurity or being in awkward positions. This led to the last two points being far off the trend line for angle of lift and hence a low R2.

Flower opening time is said to be genetically and environmentally controlled, results from this study are in agreement since light had considerable influence on bract opening events (Tables 1, 3). Significant effects of temperature, solar radiation, and vapor pressure deficit on flower opening time have been observed in rice11. For Musa spp., only light has a significant relationship with BOT. However, there was early curling under long summer days in the glasshouse in Belgium compared to short days in Arusha field conditions6. This suggested a particular light signal for BOT in Musa spp. It is unclear why high light intensity led to early lift of bracts subtending male flowers and this calls for farther investigation. Since bracts subtending male flowers instinctively open later than bracts subtending female flowers, light intensity had less effect on the former bracts. The small sample size could have also had an impact on the results in the study, the light flush from the camera could have also affected the results. The extent of weather effects on BOT in banana need to be studied in field conditions of locations with significantly different day length for a more reliable conclusion.


Source: Ecology - nature.com

The language of change

Genetic diversity may help evolutionary rescue in a clonal endemic plant species of Western Himalaya