in

Using ecological coexistence theory to understand antibiotic resistance and microbial competition

  • 1.

    Levy, S. B. & Marshall, B. Antibacterial resistance worldwide: causes, challenges and responses. Nat. Med. 10, S122–S129 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 2.

    Raymond, B. Five rules for resistance management in the antibiotic apocalypse, a road map for integrated microbial management. Evol. Appl. 12, 1079–1091 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 3.

    Perron, G. G., Inglis, R. F., Pennings, P. S. & Cobey, S. Fighting microbial drug resistance: a primer on the role of evolutionary biology in public health. Evol. Appl. 8, 211–222 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 4.

    Andersen, S. B., Shapiro, B. J., Vandenbroucke-Grauls, C. & de Vos, M. G. J. Microbial evolutionary medicine: from theory to clinical practice. Lancet Infect. Dis. 19, e273–e283 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  • 5.

    Gilbert, J. A. & Lynch, S. V. Community ecology as a framework for human microbiome research. Nat. Med. 25, 884–889 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 6.

    Huijben, S., Chan, B. H. K., Nelson, W. A. & Read, A. F. The impact of within-host ecology on the fitness of a drug-resistant parasite. Evol. Med. Public Health 2018, 127–137 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 7.

    Klümper, U. et al. Selection for antimicrobial resistance is reduced when embedded in a natural microbial community. ISME J. 13, 2927–2937 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 8.

    Andersson, D. I. & Levin, B. R. The biological cost of antibiotic resistance. Curr. Opin. Microbiol. 2, 489–493 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 9.

    Hall, A. R., Angst, D. C., Schiessl, K. T. & Ackermann, M. Costs of antibiotic resistance – separating trait effects and selective effects. Evol. Appl. 8, 261–272 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  • 10.

    Lehtinen, S. et al. Evolution of antibiotic resistance is linked to any genetic mechanism affecting bacterial duration of carriage. Proc. Natl Acad. Sci. USA 114, 1075–1080 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 11.

    Colijn, C. et al. What is the mechanism for persistent coexistence of drug-susceptible and drug-resistant strains of Streptococcus pneumoniae? J. R. Soc. Interface 7, 905–919 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  • 12.

    Blanquart, F., Lehtinen, S. & Fraser, C. An evolutionary model to predict the frequency of antibiotic resistance under seasonal antibiotic use, and an application to streptococcus pneumoniae. Proc. R. Soc. B 284, 20170679 (2017).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 13.

    Holmes, A. H. et al. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet 387, 176–187 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 14.

    Blanquart, F. Evolutionary epidemiology models to predict the dynamics of antibiotic resistance. Evol. Appl. 12, 365–383 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 15.

    Davies, N. G., Flasche, S., Jit, M. & Atkins, K. E. Within-host dynamics shape antibiotic resistance in commensal bacteria. Nat. Ecol. Evol. 3, 440–449 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 16.

    Melnyk, A. H., Wong, A. & Kassen, R. The fitness costs of antibiotic resistance mutations. Evol. Appl. 8, 273–283 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  • 17.

    Bjourkman, J., Nagaev, I., Berg, O. G., Hughes, D. & Andersson, D. I. Effects of environment on compensatory mutations to ameliorate costs of antibiotic resistance. Science 287, 1479–1482 (2000).

    Article  Google Scholar 

  • 18.

    Petersen, A., Aarestrup, F. M. & Olsen, J. E. The in vitro fitness cost of antimicrobial resistance in Escherichia coli varies with the growth conditions. FEMS Microbiol. Lett. 299, 53–59 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 19.

    Paulander, W., Maisnier-Patin, S. & Andersson, D. I. The fitness cost of streptomycin resistance depends on rpsL mutation, carbon source and RpoS (σS). Genetics 183, 539–546 (2009).

    PubMed Central  Article  CAS  Google Scholar 

  • 20.

    Hall, A. R., Iles, J. C. & MacLean, R. C. The fitness cost of rifampicin resistance in Pseudomonas aeruginosa depends on demand for RNA polymerase. Genetics 187, 817–822 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 21.

    Trindade, S., Sousa, A. & Gordo, I. Antibiotic resistance and stress in the light of Fisher’s model. Evolution 66, 3815–3824 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  • 22.

    Tilman, D. Resource Competition and Community Structure (Princeton Univ. Press, 1982).

  • 23.

    Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).

    Article  Google Scholar 

  • 24.

    Chase, J. & Leibold, M. Ecological Niches: Linking Classical and Contemporary Approaches (Univ. Chicago Press, 2003).

  • 25.

    Adler, P. B., Hillerislambers, J. & Levine, J. M. A niche for neutrality. Ecol. Lett. 10, 95–104 (2007).

    PubMed  Article  PubMed Central  Google Scholar 

  • 26.

    HilleRisLambers, J., Adler, P. B., Harpole, W., Levine, J. M. & Mayfield, M. Rethinking community assembly through the lens of coexistence theory. Annu. Rev. Ecol. Evol. Syst. 43, 227–248 (2012).

    Article  Google Scholar 

  • 27.

    Letten, A. D., Ke, P.-J. & Fukami, T. Linking modern coexistence theory and contemporary niche theory. Ecol. Monogr. 87, 161–177 (2017).

    Article  Google Scholar 

  • 28.

    Barabás, G., D’Andrea, R. & Stump, S. M. Chesson’s coexistence theory. Ecol. Monogr. 88, 277–303 (2018).

    Article  Google Scholar 

  • 29.

    Chesson, P. Updates on mechanisms of maintenance of species diversity. J. Ecol. 106, 1773–1794 (2018).

    Article  Google Scholar 

  • 30.

    Ellner, S. P., Snyder, R. E., Adler, P. B. & Hooker, G. An expanded modern coexistence theory for empirical applications. Ecol. Lett. 22, 3–18 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  • 31.

    Chesson, P. Multispecies competition in variable environments. Theor. Popul. Biol. 45, 227–276 (1994).

    Article  Google Scholar 

  • 32.

    Adler, P. B., HilleRisLambers, J., Kyriakidis, P. C., Guan, Q. & Levine, J. M. Climate variability has a stabilizing effect on the coexistence of prairie grasses. Proc. Natl Acad. Sci. USA 103, 12793–12798 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 33.

    Yuan, C. & Chesson, P. The relative importance of relative nonlinearity and the storage effect in the lottery model. Theor. Popul. Biol. 105, 39–52 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  • 34.

    Wale, N., Sim, D. G. & Read, A. F. A nutrient mediates intraspecific competition between rodent malaria parasites in vivo. Proc. R. Soc. B 284, 20171067 (2017).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 35.

    Pereira, F. C. & Berry, D. Microbial nutrient niches in the gut. Environ. Microbiol. 19, 1366–1378 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 36.

    Hester, E. R., Jetten, M. S. M., Welte, C. U. & Lücker, S. Metabolic overlap in environmentally diverse microbial communities. Front. Genet. 10, 989 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 37.

    Smith, V. H. & Holt, R. D. Resource competition and within-host disease dynamics. Trends Ecol. Evol. 11, 386–389 (1996).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 38.

    Hurtado, P. J., Hall, S. R. & Ellner, S. P. Infectious disease in consumer populations: dynamic consequences of resource-mediated transmission and infectiousness. Theor. Ecol. 7, 163–179 (2014).

    Article  Google Scholar 

  • 39.

    Cressler, C. E., Nelson, W. A., Day, T. & McCauley, E. Disentangling the interaction among host resources, the immune system and pathogens. Ecol. Lett. 17, 284–293 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  • 40.

    Smith, V. H., Holt, R. D., Smith, M. S., Niu, Y. & Barfield, M. Resources, mortality, and disease ecology: importance of positive feedbacks between host growth rate and pathogen dynamics. Isr. J. Ecol. Evol. 61, 37–49 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 41.

    Alonso, A. et al. Overexpression of the multidrug efflux pump SmeDEF impairs Stenotrophomonas maltophilia physiology. J. Antimicrob. Chemother. 53, 432–434 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 42.

    Perkins, A. E. & Nicholson, W. L. Uncovering new metabolic capabilities of Bacillus subtilis using phenotype profiling of rifampin-resistant rpoB mutants. J. Bacteriol. 190, 807–814 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 43.

    Martínez, J. L. & Rojo, F. Metabolic regulation of antibiotic resistance. FEMS Microbiol. Rev. 35, 768–789 (2011).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 44.

    Zampieri, M. et al. Metabolic constraints on the evolution of antibiotic resistance. Mol. Syst. Biol. 13, 917 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 45.

    Dunphy, L. J., Yen, P. & Papin, J. A. Integrated experimental and computational analyses reveal differential metabolic functionality in antibiotic-resistant Pseudomonas aeruginosa. Cell Syst. 8, 3-14.e3 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 46.

    Webber, M. A. & Piddock, L. J. V. The importance of efflux pumps in bacterial antibiotic resistance. J. Antimicrob. Chemother. 51, 9–11 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 47.

    Fitzsimmons, J. M., Schoustra, S. E., Kerr, J. T. & Kassen, R. Population consequences of mutational events: effects of antibiotic resistance on the r/K trade-off. Evol. Ecol. 24, 227–236 (2010).

    Article  Google Scholar 

  • 48.

    Baltrus, D. A. Exploring the costs of horizontal gene transfer. Trends Ecol. Evol. 28, 489–495 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  • 49.

    San Millan, A. & MacLean, R. C. Fitness costs of plasmids: a limit to plasmid transmission. Microbiol. Spectrum 5, 65–79 (2017).

    Google Scholar 

  • 50.

    Dennis, J. J. The evolution of IncP catabolic plasmids. Curr. Opin. Biotechnol. 16, 291–298 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 51.

    Shintani, M. et al. Response of the Pseudomonas host chromosomal transcriptome to carriage of the IncP-7 plasmid pCAR1. Environ. Microbiol. 12, 1413–1426 (2009).

    PubMed  PubMed Central  Google Scholar 

  • 52.

    San Millan, A. et al. Integrative analysis of fitness and metabolic effects of plasmids in Pseudomonas aeruginosa PAO1. ISME J. 12, 3014–3024 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 53.

    Schlüter, A. et al. The 64508 bp IncP-1β antibiotic multiresistance plasmid pB10 isolated from a waste-water treatment plant provides evidence for recombination between members of different branches of the IncP-1β group. Microbiology 149, 3139–3153 (2003).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 54.

    Chen, K. et al. Comparison of four Comamonas catabolic plasmids reveals the evolution of pBHB to catabolize haloaromatics. Appl. Environ. Microbiol. 82, 1401–1411 (2016).

    CAS  PubMed Central  Article  Google Scholar 

  • 55.

    Douglas, A. E. Fundamentals of Microbiome Science: How Microbes Shape Animal Biology (Princeton Univ. Press, 2018).

  • 56.

    Ibrahim, K. H., Gunderson, B. W., Hermsen, E. D., Hovde, L. B. & Rotschafer, J. C. Pharmacodynamics of pulse dosing versus standard dosing: in vitro metronidazole activity against Bacteroides fragilis and Bacteroides thetaiotaomicron. Antimicrob. Agents Chemother. 48, 4195–4199 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 57.

    Peña-Miller, R., Lähnemann, D., Schulenburg, H., Ackermann, M. & Beardmore, R. Selecting against antibiotic-resistant pathogens: optimal treatments in the presence of commensal bacteria. Bull. Math. Biol. 74, 908–934 (2012).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 58.

    Lin, W.-H. & Kussell, E. Complex interplay of physiology and selection in the emergence of antibiotic resistance. Curr. Biol. 26, 1486–1493 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 59.

    Bauer, M., Graf, I. R., Ngampruetikorn, V., Stephens, G. J. & Frey, E. Exploiting ecology in drug pulse sequences in favour of population reduction. PLoS Comput. Biol. 13, e1005747 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 60.

    Baker, C. M., Ferrari, M. J. & Shea, K. Beyond dose: pulsed antibiotic treatment schedules can maintain individual benefit while reducing resistance. Sci. Rep. 8, 5866 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 61.

    Nev, O. A., Jepson, A., Beardmore, R. E. & Gudelj, I. Predicting community dynamics of antibiotic-sensitive and -resistant species in fluctuating environments. J. R. Soc. Interface 17, 20190776 (2020).

    PubMed  Article  PubMed Central  Google Scholar 

  • 62.

    Kouyos, R. D. et al. The path of least resistance: aggressive or moderate treatment? Proc. R. Soc. B 281, 20140566 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  • 63.

    Day, T. & Read, A. F. Does high-dose antimicrobial chemotherapy prevent the evolution of resistance? PLoS Comput. Biol. 12, e1004689 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 64.

    Alexander, H. K. & MacLean, R. C. Stochastic bacterial population dynamics restrict the establishment of antibiotic resistance from single cells. Proc. Natl Acad. Sci. USA 117, 19455–19464 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 65.

    Zarrinpar, A., Chaix, A., Yooseph, S. & Panda, S. Diet and feeding pattern affect the diurnal dynamics of the gut microbiome. Cell Metab. 20, 1006–1017 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 66.

    Thaiss, C. A., Zeevi, D., Levy, M., Segal, E. & Elinav, E. A day in the life of the meta-organism: diurnal rhythms of the intestinal microbiome and its host. Gut Microbes 6, 137–142 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 67.

    Kaczmarek, J. L., Thompson, S. V. & Holscher, H. D. Complex interactions of circadian rhythms, eating behaviors, and the gastrointestinal microbiota and their potential impact on health. Nutr. Rev. 75, 673–682 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 68.

    Turnbaugh, P. J. et al. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci. Transl. Med. 1, 6ra14 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 69.

    Wu, G. D. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105–108 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 70.

    David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).

    CAS  Article  Google Scholar 

  • 71.

    Venable, E. B. et al. Effects of feeding management on the equine cecal microbiota. J. Equine Vet. Sci. 49, 113–121 (2017).

    Article  Google Scholar 

  • 72.

    Parris, D. J., Morgan, M. M. & Stewart, F. J. Feeding rapidly alters microbiome composition and gene transcription in the clownfish gut. Appl. Environ. Microbiol. 85, e02479-18 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 73.

    Chesson, P. & Huntly, N. The roles of harsh and fluctuating conditions in the dynamics of ecological communities. Am. Nat. 150, 519–553 (1997).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 74.

    Chesson, P. Quantifying and testing coexistence mechanisms arising from recruitment fluctuations. Theor. Popul. Biol. 64, 345–357 (2003).

    PubMed  Article  PubMed Central  Google Scholar 

  • 75.

    Watson, S. P., Clements, M. O. & Foster, S. J. Characterization of the starvation-survival response of Staphylococcus aureus. J. Bacteriol. 180, 1750–1758 (1998).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 76.

    Grover, J. Resource Competition Vol. 19 (Springer Science & Business Media, 1997).

  • 77.

    Letten, A. D., Dhami, M. K., Ke, P.-J. & Fukami, T. Species coexistence through simultaneous fluctuation-dependent mechanisms. Proc. Natl Acad. Sci. USA 115, 6745–6750 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 78.

    Levison, M. E. & Levison, J. H. Pharmacokinetics and pharmacodynamics of antibacterial agents. Infect. Dis. Clin. N. Am. 23, 791–815 (2009).

    Article  Google Scholar 

  • 79.

    Maharjan, R. & Ferenci, T. The fitness costs and benefits of antibiotic resistance in drug-free microenvironments encountered in the human body. Environ. Microbiol. Rep. 9, 635–641 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 80.

    Silva, A. S. et al. Evolutionary approaches to prolong progression-free survival in breast cancer. Cancer Res. 72, 6362–6370 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 81.

    Song, T. et al. Fitness costs of rifampicin resistance in Mycobacterium tuberculosis are amplified under conditions of nutrient starvation and compensated by mutation in the β subunit of RNA polymerase. Mol. Microbiol. 91, 1106–1119 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 82.

    Hart, S. P., Schreiber, S. J. & Levine, J. M. How variation between individuals affects species coexistence. Ecol. Lett. 19, 825–838 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  • 83.

    Schreiber, S. J., Levine, J. M., Godoy, O., Kraft, N. J. & Hart, S. P. Does deterministic coexistence theory matter in a finite world? Insights from serpentine annual plants. Preprint at bioRxiv https://doi.org/10.1101/290882 (2020).

  • 84.

    Data from the ECDC Surveillance Atlas – Antimicrobial Resistance (European Centre for Disease Prevention and Control, 2020); http://go.nature.com/3oLrjOG

  • 85.

    Matteo, M. J., Granados, G., Olmos, M., Wonaga, A. & Catalano, M. Helicobacter pylori amoxicillin heteroresistance due to point mutations in PBP-1A in isogenic isolates. J. Antimicrob. Chemother. 61, 474–477 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 86.

    Mongkolrattanothai, K. et al. Simultaneous carriage of multiple genotypes of Staphylococcus aureus in children. J. Med. Microbiol. 60, 317–322 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 87.

    Folkvardsen, D. B. et al. Rifampin heteroresistance in Mycobacterium tuberculosis cultures as detected by phenotypic and genotypic drug susceptibility test methods. J. Clin. Microbiol. 51, 4220–4222 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  • 88.

    Kamng’ona, A. W. et al. High multiple carriage and emergence of Streptococcus pneumoniae vaccine serotype variants in Malawian children. BMC Infect. Dis. 15, 234 (2015).

  • 89.

    Andersson, D. I., Nicoloff, H. & Hjort, K. Mechanisms and clinical relevance of bacterial heteroresistance. Nat. Rev. Microbiol. 17, 479–496 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 90.

    Chesson, P. & Kuang, J. J. The interaction between predation and competition. Nature 456, 235–238 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 91.

    Gonze, D., Coyte, K. Z., Lahti, L. & Faust, K. Microbial communities as dynamical systems. Curr. Opin. Microbiol. 44, 41–49 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 92.

    Godoy, O., Kraft, N. J. B. & Levine, J. M. Phylogenetic relatedness and the determinants of competitive outcomes. Ecol. Lett. 17, 836–844 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  • 93.

    Kraft, N. J. B., Godoy, O. & Levine, J. M. Plant functional traits and the multidimensional nature of species coexistence. Proc. Natl. Acad. Sci. USA 112, 797–802 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 94.

    Hart, S. P., Freckleton, R. P. & Levine, J. M. How to quantify competitive ability. J. Ecol. 106, 1902–1909 (2018).

    Article  Google Scholar 

  • 95.

    Hallinen, K. M., Karslake, J. & Wood, K. B. Delayed antibiotic exposure induces population collapse in enterococcal communities with drug-resistant subpopulations. eLife 9, e52813 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 96.

    Gould, A. L. et al. Microbiome interactions shape host fitness. Proc. Natl Acad. Sci. USA 115, E11951–E11960 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 97.

    Torres-Barceló, C. & Hochberg, M. E. Evolutionary rationale for phages as complements of antibiotics. Trends Microbiol. 24, 249–256 (2016).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 98.

    Burmeister, A. R. et al. Pleiotropy complicates a trade-off between phage resistance and antibiotic resistance. Proc. Natl Acad. Sci. USA 117, 11207–11216 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 99.

    Butler, S. & O’Dwyer, J. P. Stability criteria for complex microbial communities. Nat. Commun. 9, 2970 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 100.

    Estrela, S. & Brown, S. P. Community interactions and spatial structure shape selection on antibiotic resistant lineages. PLoS Comput. Biol. 14, e1006179 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 


  • Source: Ecology - nature.com

    Sarah Williams named director of the Norman B. Leventhal Center for Advanced Urbanism

    J-PAL North America calls for proposals from state and local governments