in

Using mounting, orientation, and design to improve bat box thermodynamics in a northern temperate environment

  • 1.

    Priddel, D. & Carlile, N. J. An artificial nest box for burrow-nesting seabirds. Emu-Austral Ornithol. 95, 290–294 (1995).

    Article 

    Google Scholar 

  • 2.

    Burton, N. H., Evans, P. R. & Robinson, M. A. Effects on shorebird numbers of disturbance, the loss of a roost site and its replacement by an artificial island at Hartlepool, Cleveland. Biol. Conserv. 77, 193–201 (1996).

    Article 

    Google Scholar 

  • 3.

    Chambers, C. L., Alm, V., Siders, M. S. & Rabe, M. J. Use of artificial roosts by forest-dwelling bats in northern Arizona. Wildl. Soc. B 30, 1085–1091 (2002).

    Google Scholar 

  • 4.

    Lausen, C. L. & Barclay, R. M. Benefits of living in a building: Big brown bats (Eptesicus fuscus) in rocks versus buildings. J. Mammal. 87, 362–370 (2006).

    Article 

    Google Scholar 

  • 5.

    Kelm, D. H., Wiesner, K. R. & Helversen, O. V. Effects of artificial roosts for frugivorous bats on seed dispersal in a Neotropical forest pasture mosaic. Biol. Conserv. 22, 733–741 (2008).

    Article 

    Google Scholar 

  • 6.

    Agnelli, P., Maltagliati, G., Ducci, L. & Cannicci, S. J. H. Artificial roosts for bats: education and research. The” Be a bat’s friend” project of the Natural History Museum of the University of Florence. Ital. J. Mammal. 22, 733–741 (2010).

    Google Scholar 

  • 7.

    Rueegger, N. Bat boxes: A review of their use and application, past, present and future. Acta Chiropterol. 18, 279–299 (2016).

    Article 

    Google Scholar 

  • 8.

    Brittingham, M. C. & Williams, L. M. Bat boxes as alternative roosts for displaced bat maternity colonies. Wildl. Soc. B 28, 197–207 (2000).

    Google Scholar 

  • 9.

    Lambrechts, M. M. et al. Nest box design for the study of diurnal raptors and owls is still an overlooked point in ecological, evolutionary and conservation studies: A review. J. Ornithol. 153, 23–34 (2012).

    Article 

    Google Scholar 

  • 10.

    Easterling, D. R. et al. Observed variability and trends in extreme climate events: A brief review. Bull. Am. Meteorol. Soc. 81, 417–426 (2000).

    ADS 
    Article 

    Google Scholar 

  • 11.

    Welbergen, J. A., Klose, S. M., Markus, N. & Eby, P. Climate change and the effects of temperature extremes on Australian flying-foxes. Proc. R. Soc. B 275, 419–425 (2008).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 12.

    Adams, R. A. Bat reproduction declines when conditions mimic climate change projections for western North America. Ecology 91, 2437–2445 (2010).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 13.

    Ratti, J. T. & Reese, K. P. J. T. Preliminary test of the ecological trap hypothesis. J. Wildl. Manage 52, 484–491 (1988).

    Article 

    Google Scholar 

  • 14.

    Flaquer, C. et al. Could overheating turn bat boxes into death traps. Barb 7, 46–53 (2014).

    Google Scholar 

  • 15.

    Bideguren, G. M. et al. Bat boxes and climate change: Testing the risk of over-heating in the Mediterranean region. Biodivers. Conserv. 28, 21–35 (2019).

    Article 

    Google Scholar 

  • 16.

    Griffiths, S. R. et al. Surface reflectance drives nest box temperature profiles and thermal suitability for target wildlife. PLoS ONE 12, e0176951 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 17.

    Rowland, J. A., Briscoe, N. J. & Handasyde, K. A. Comparing the thermal suitability of nest-boxes and tree-hollows for the conservation-management of arboreal marsupials. Biol. Conserv. 209, 341–348 (2017).

    Article 

    Google Scholar 

  • 18.

    Zahn, A. Reproductive success, colony size and roost temperature in attic-dwelling bat Myotis myotis. J. Zool. 247, 275–280 (1999).

    Article 

    Google Scholar 

  • 19.

    Ruczyński, I. Influence of temperature on maternity roost selection by noctule bats (Nyctalus noctula) and Leisler’s bats (N. leisleri) in Białowieża Primeval Forest Poland. Can. J. Zool. 84, 900–907 (2006).

    Article 

    Google Scholar 

  • 20.

    Wilcox, A. & Willis, C. K. Energetic benefits of enhanced summer roosting habitat for little brown bats (Myotis lucifugus) recovering from white-nose syndrome. Conserv. Physiol. 4, 070 (2016).

    Article 

    Google Scholar 

  • 21.

    Thiollay, J.-M. Comparative foraging success of insectivorous birds in tropical and temperate forests: Ecological implications. Oikos 53, 17–30 (1988).

    Article 

    Google Scholar 

  • 22.

    Ransome, R. Population changes of greater horseshoe bats studied near Bristol over the past twenty-six years. Biol. J. Linn. Soc. 38, 71–82 (1989).

    Article 

    Google Scholar 

  • 23.

    O’Shea, T. J. et al. Recruitment in a Colorado population of big brown bats: Breeding probabilities, litter size, and first-year survival. J. Mammal. 91, 418–428 (2010).

    Article 

    Google Scholar 

  • 24.

    Nurul-Ain, E., Rosli, H. & Kingston, T. Resource availability and roosting ecology shape reproductive phenology of rain forest insectivorous bats. Biotropica 49, 382–394 (2017).

    Article 

    Google Scholar 

  • 25.

    Racey, P. Environmental factors affecting the length of gestation in heterothermic bats. J. Reprod. Fertil. 19, 175–189 (1973).

    CAS 

    Google Scholar 

  • 26.

    Racey, P. & Swift, S. M. Variations in gestation length in a colony of pipistrelle bats (Pipistrellus pipistrellus) from year to year. J. Reprod. Fertil. 61, 123–129 (1981).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 27.

    Wilde, C. J., Knight, C. H. & Racey, P. A. Influence of torpor on milk protein composition and secretion in lactating bats. J. Exp. Zool. A 284, 35–41 (1999).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Beer, J. R. & Richards, A. G. Hibernation of the big brown bat. J. Mammal. 37, 31–41 (1956).

    Article 

    Google Scholar 

  • 29.

    Pagels, J. F. Temperature regulation, body weight and changes in total body fat of the free-tailed bat, Tadarida brasiliensis cynocephala (Le Conte). Comp. Biochem. Phys. A 50, 237–246 (1975).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Henry, M., Thomas, D. W., Vaudry, R. & Carrier, M. Foraging distances and home range of pregnant and lactating little brown bats (Myotis lucifugus). J. Mammal. 83, 767–774 (2002).

    Article 

    Google Scholar 

  • 31.

    Studier, E. H. & O’Farrell, M. J. Biology of Myotis thysanodes and M. lucifugus (Chiroptera: Vespertilionidae)—III. Metabolism, heart rate, breathing rate, evaporative water loss and general energetics. Comp. Biochem. Phys. A 54, 423–432 (1976).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Henry, M. Étude de l’écologie d’une population de petites chauves-souris brunes (Myotis Lucifugus) en vue d’un programme de conservation. Master’s thesis. Sherbrooke University. https://savoirs.usherbrooke.ca/handle/11143/4513 (2001).

  • 33.

    Flaquer, C., Torre, I. & Ruiz-Jarillo, R. The value of bat-boxes in the conservation of Pipistrellus pygmaeus in wetland rice paddies. Biol. Conserv. 128, 223–230 (2006).

    Article 

    Google Scholar 

  • 34.

    Mickleburgh, S. P., Hutson, A. M. & Racey, P. A. A review of the global conservation status of bats. Oryx 36, 18–34 (2002).

    Article 

    Google Scholar 

  • 35.

    Boyles, J. G., Cryan, P. M., McCracken, G. F. & Kunz, T. H. Economic importance of bats in agriculture. Science 332, 41–42 (2011).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 36.

    Barclay, R. M., Harder, L. D., Kunz, T. & Fenton, M. Life histories of bats: life in the slow lane. In Bat Ecology (eds Kunz, T. & Fenton, M.) 209–253 (The University of Chicago Press, 2003).

    Google Scholar 

  • 37.

    Keen, R. & Hitchcock, H. B. Survival and longevity of the little brown bat (Myotis lucifugus) in southeastern Ontario. J. Mammal. 61, 1–7 (1980).

    Article 

    Google Scholar 

  • 38.

    Kunz, T. H. Censusing bats: challenges, solutions, and sampling biases in Monitoring Trends in Bat Populations of the United States and Territories: Problems and Prospects (Eds TJ O’Shea, and MA Bogan). 9–20 (US Geological Survey, Sciences Division, Biological Resources Discipline, Information and Technology Report USGS/BRD/ITR-2003–003, 2003).

  • 39.

    Campbell, L. A., Hallett, J. G. & O’Connell, M. A. Conservation of bats in managed forests: Use of roosts by Lasionycteris noctivagans. J. Mammal. 77, 976–984 (1996).

    Article 

    Google Scholar 

  • 40.

    Entwistle, A., Racey, P. & Speakman, J. R. Roost selection by the brown long-eared bat Plecotus auritus. J. Appl. Ecol. 34, 399–408 (1997).

    Article 

    Google Scholar 

  • 41.

    Kerth, G., Weissmann, K. & König, B. Day roost selection in female Bechstein’s bats (Myotis bechsteinii): A field experiment to determine the influence of roost temperature. Oecologia 126, 1–9 (2001).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 42.

    Lourenço, S. I. & Palmeirim, J. M. Influence of temperature in roost selection by Pipistrellus pygmaeus (Chiroptera): Relevance for the design of bat boxes. Biol. Conserv. 2, 237–243 (2004).

    Article 

    Google Scholar 

  • 43.

    Webber, Q. M. & Willis, C. K. An experimental test of effects of ambient temperature and roost quality on aggregation by little brown bats (Myotis lucifugus). J. Therm. Biol. 74, 174–180 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 44.

    Mering, E. D. & Chambers, C. L. Thinking outside the box: A review of artificial roosts for bats. Wildl. Soc. B 38, 741–751 (2014).

    Article 

    Google Scholar 

  • 45.

    Mackintosh, M. Bats and licensing: A report on the success of maternity roost compensation measures. Scottish Natural Heritage Commissioned Report No. 928. https://www.nature.scot/sites/default/files/Publication%202016%20-%20SNH%20Commissioned%20Report%20928%20-%20Bats%20and%20Licensing%20-%20A%20report%20on%20the%20success%20of%20maternity%20roost%20compensation%20measures.pdf (2016).

  • 46.

    López-Baucells, A. et al. Bat boxes in urban non-native forests: A popular practice that should be reconsidered. Urban Ecosyst. 20, 217–225 (2017).

    Article 

    Google Scholar 

  • 47.

    Neilson, A. L. & Fenton, M. B. Responses of little brown myotis to exclusion and to bat houses. Wildl. Soc. B 22, 8–14 (1994).

    Google Scholar 

  • 48.

    White, E. P. Factors affecting bat house occupancy in Colorado. Southwest Nat. 49, 344–349 (2004).

    Article 

    Google Scholar 

  • 49.

    Michaelsen, T. C., Jensen, K. H. & Högstedt, G. R. Roost site selection in pregnant and lactating soprano pipistrelles (Pipistrellus pygmaeus Leach, 1825) at the species northern extreme: The importance of warm and safe roosts. Acta Chiropterol. 16, 349–357 (2014).

    Article 

    Google Scholar 

  • 50.

    Bartonicka, T. & Řehák, Z. Influence of the microclimate of bat boxes on their occupation by the soprano pipistrelle Pipistrellus pygmaeus: Possible cause of roost switching. Acta Chiropterol. 9, 517–526 (2007).

    Article 

    Google Scholar 

  • 51.

    Ralegaonkar, R. V. & Gupta, R. Review of intelligent building construction: A passive solar architecture approach. Renew. Sust. Energy Rev. 14, 2238–2242 (2010).

    Article 

    Google Scholar 

  • 52.

    Morrissey, J., Moore, T. & Horne, R. E. Affordable passive solar design in a temperate climate: An experiment in residential building orientation. Renew. Energy 36, 568–577 (2011).

    Article 

    Google Scholar 

  • 53.

    Sodha, M. S., Bansal, N. K., Bansal, P. K., Kumar, A., and Malik, M. Solar passive building: Science and Design (ed. Ilustrated), (Pergamon Press, 1986).

  • 54.

    Griffiths, S. R. et al. Bat boxes are not a silver bullet conservation tool. Mammal. Rev. 47, 261–265 (2017).

    Article 

    Google Scholar 

  • 55.

    Arias, M., Gignoux-Wolfsohn, S., Kerwin, K. & Maslo, B. Use of artificial roost boxes installed as alternative habitat for bats evicted from buildings. Northeast Nat. 27, 201–214 (2020).

    Article 

    Google Scholar 

  • 56.

    Tuttle, M. D., Kiser, M. & Kiser, S. The Bat House Builder’s handbook (Eds Tuttle, M. D., Kiser, M. & Kiser, S.). (University of Texas Press, 2005).

  • 57.

    Kiser, M. & Kiser, S. A decade of bat house discovery. Bat House Res. 12, 1–12 (2004).

    Google Scholar 

  • 58.

    Long, R., Kiser, W. & Kiser, S. Well-placed bat houses can attract bats to Central Valley farms. Calif. Agric. 60, 91–94 (2006).

    Article 

    Google Scholar 

  • 59.

    Dillingham, C. P., Cross, S. P. & Dillingham, P. W. Two environmental factors that influence usage of bat houses in managed forests of southwest Oregon. Northwest Nat. 84, 20–23 (2003).

    Article 

    Google Scholar 

  • 60.

    Horncastle, V., Frary, V., Ingraldi, M. P. Progress report—forest-dwelling bat responses to forest restoration (Arizona Game and Fish Department, 2008).

  • 61.

    Ardia, D. R., Pérez, J. H. & Clotfelter, E. D. Nest box orientation affects internal temperature and nest site selection by Tree Swallows. J. Field. Ornithol. 77, 339–344 (2006).

    Article 

    Google Scholar 

  • 62.

    Hooge, P. N., Stanback, M. T. & Koenig, W. D. Nest-site selection in the Acorn Woodpecker. Auk 116, 45–54 (1999).

    Article 

    Google Scholar 

  • 63.

    Wiebe, K. L. Microclimate of tree cavity nests: Is it important for reproductive success in Northern Flickers?. Auk 118, 412–421 (2001).

    Article 

    Google Scholar 

  • 64.

    Godinho, L. N., Lumsden, L. F., Coulson, G. & Griffiths, S. R. Flexible roost selection by Gould’s wattled bats (Chalinolobus gouldii) using bat boxes in an urban landscape. Aust. J. Zool. 10, e1071 (2020).

    Google Scholar 

  • 65.

    Goldingay, R. L., Rueegger, N. N., Grimson, M. J. & Taylor, B. D. Specific nest box designs can improve habitat restoration for cavity-dependent arboreal mammals. Restor. Ecol. 23, 482–490 (2015).

    Article 

    Google Scholar 

  • 66.

    Summers, R. & Taylor, W. Use by tits of nest boxes of different designs in pinewoods. Bird Study 43, 138–141 (1996).

    Article 

    Google Scholar 

  • 67.

    Hoeh, J. P. S., Bakken, G. S., Mitchell, W. A. & O’Keefe, J. M. In artificial roost comparison, bats show preference for rocket box style. PLoS ONE 13, e0205701 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 68.

    Rueegger, N., Goldingay, R., Law, B. & Gonsalves, L. Testing multichambered bat box designs in a habitat-offset area in eastern Australia: Influence of material, colour, size and box host. Pac. Conserv. Biol. 26, 13–21 (2020).

    Article 

    Google Scholar 

  • 69.

    Campbell, S., Coulson, G. & Lumsden, L. F. Divergent microclimates in artificial and natural roosts of the large-footed myotis (Myotis macropus). Acta Chiropterol. 12, 173–185 (2010).

    Article 

    Google Scholar 

  • 70.

    Bat Conservation International, Bat houses https://www.batcon.org/about-bats/bat-houses/ (2021).

  • 71.

    Geiser, F. & Drury, R. L. Radiant heat affects thermoregulation and energy expenditure during rewarming from torpor. J. Comp. Physiol. B 173, 55–60 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 72.

    Turbill, C., Körtner, G. & Geiser, F. Natural use of heterothermy by a small, tree-roosting bat during summer. Physiol. Biochem. Zool. 76, 868–876 (2003).

    PubMed 
    Article 

    Google Scholar 

  • 73.

    Dzal, Y. A. & Brigham, R. M. The tradeoff between torpor use and reproduction in little brown bats (Myotis lucifugus). J. Comp. Physiol. B 183, 279–288 (2013).

    PubMed 
    Article 

    Google Scholar 

  • 74.

    Speakman, J. R., Thomas, D. W., Kunz, T. & Fenton, M. B. Physiological ecology and energetics of bats. in Bat Ecology (Eds Kunz, T. & Fenton, M. B.). 430–490 (The University of Chicago Press, 2003).

  • 75.

    Besler, N. K. & Broders, H. G. Combinations of reproductive, individual, and weather effects best explain torpor patterns among female little brown bats (Myotis lucifugus). Ecol. Evol. 9, 5158–5171 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 76.

    Willis, C. K. & Brigham, R. M. Social thermoregulation exerts more influence than microclimate on forest roost preferences by a cavity-dwelling bat. Behav. Ecol. Sociobiol. 62, 97–108 (2007).

    Article 

    Google Scholar 

  • 77.

    Kurta, A., Bell, G. P., Nagy, K. A. & Kunz, T. H. Energetics of pregnancy and lactation in freeranging little brown bats (Myotis lucifugus). Physiol. Zool. 62, 804–818 (1989).

    Article 

    Google Scholar 

  • 78.

    Lewis, S. E. Roost fidelity of bats: A review. J. Mammal. 76, 481–496 (1995).

    Article 

    Google Scholar 

  • 79.

    Kerth, G. & Konig, B. Fission, fusion and nonrandom associations in female Bechstein’s bats (Myotis bechsteinii). Behaviour 136, 1187–1202 (1999).

    Article 

    Google Scholar 

  • 80.

    Boye, P. & Dietz, M. Development of good practice guidelines for woodland management for bats. English Nature Report to The Bat Conservation Trust (2005).

  • 81.

    Fukui, D., Okazaki, K., Miyazaki, M. & Maeda, K. The effect of roost environment on roost selection by non-reproductive and dispersing Asian parti-coloured bats Vespertilio sinensis. Mammal. Stud. 35, 99–109 (2010).

    Article 

    Google Scholar 

  • 82.

    Fabianek, F., Simard, M. A., Racine, E. B. & Desrochers, A. Selection of roosting habitat by male Myotis bats in a boreal forest. Can. J. Zool. 93, 539–546 (2015).

    Article 

    Google Scholar 

  • 83.

    Hamilton, I. M. & Barclay, R. M. Patterns of daily torpor and day-roost selection by male and female big brown bats (Eptesicus fuscus). Can. J. Zool. 72, 744–749 (1994).

    Article 

    Google Scholar 

  • 84.

    Grinevitch, L., Holroyd, S. & Barclay, R. Sex differences in the use of daily torpor and foraging time by big brown bats (Eptesicus fuscus) during the reproductive season. J. Zool. 235, 301–309 (1995).

    Article 

    Google Scholar 

  • 85.

    Dietz, M. & Kalko, E. K. Seasonal changes in daily torpor patterns of free-ranging female and male Daubenton’s bats (Myotis daubentonii). J. Comp. Physiol. B 176, 223–231 (2006).

    PubMed 
    Article 

    Google Scholar 

  • 86.

    Barclay, R. M. Night roosting behavior of the little brown bat, Myotis lucifugus. J. Mammal. 63, 464–474 (1982).

    Article 

    Google Scholar 

  • 87.

    Jonasson, K. A. & Willis, C. K. R. Changes in body condition of hibernating bats support the thrifty female hypothesis and predict consequences for populations with white-nose syndrome. PLoS ONE 6, e21061 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 88.

    Willis, C. R., Turbill, C. & Geiser, F. Torpor and thermal energetics in a tiny Australian vespertilionid, the little forest bat (Vespadelus vulturnus). J. Comp. Physiol. B 175, 479–486 (2005).

    PubMed 
    Article 

    Google Scholar 

  • 89.

    Hock, R. J. The metabolic rates and body temperatures of bats. Biol. Bull. 101, 475–479 (1951).

    Article 

    Google Scholar 

  • 90.

    Humphries, M. M., Thomas, D. W. & Speakman, J. R. Climate-mediated energetic constraints on the distribution of hibernating mammals. Nature 418, 313–316 (2002).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 91.

    Humphries, M.M., Speakman, J.R., & Thomas, D.W. Temperature, hibernation energetics, and the cave and continental distributions of little brown myotis. in Functional and Evolutionary Ecology of Bats (Zubaid, A., McCracken, G.F., Kunz, T.H.). 23–37 (Oxford University Press, 2005).

  • 92.

    Thomas, D. W., Dorais, M. & Bergeron, J. Winter energy budget and cost of arousals for hibernating little brown bats, Myotis lucifugus. J. Mammal. 71, 475–479 (1990).

    Article 

    Google Scholar 

  • 93.

    Stones, R. C. & Wiebers, J. E. A review of temperature regulation in bats (Chiroptera). Am. Midl. Nat. 74, 155–167 (1965).

    Article 

    Google Scholar 

  • 94.

    Campbell, K. L., McIntyre, I. W. & MacArthur, R. W. Postprandial heat increment does not substitute for active thermogenesis in cold challenged star-nosed moles (Condylura cristata). J. Exp. Biol. 203, 301–310 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Metabolic capabilities mute positive response to direct and indirect impacts of warming throughout the soil profile

    Reproductive performance in houbara bustard is affected by the combined effects of age, inbreeding and number of generations in captivity