in

Variable coastal hypoxia exposure and drivers across the southern California Current

  • 1.

    Díaz, R. J. Overview of hypoxia around the world. J. Environ. Qual. 30, 275–281 (2001).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 2.

    Laffoley, D. & Baxter, J. M. (eds) Ocean deoxygenation: Everyone’s problem. Causes, impacts, consequences and solutions (IUCN, International Union for Conservation of Nature, 2019).

    Google Scholar 

  • 3.

    Booth, J. A. T. et al. Patterns and potential drivers of declining oxygen content along the southern California coast. Limnol. Oceanogr. 59, 1127–1138 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 4.

    Gilbert, D., Rabalais, N. N., Díaz, R. J. & Zhang, J. Evidence for greater oxygen decline rates in the coastal ocean than in the open ocean. Biogeosciences 7, 2283–2296 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 5.

    Altieri, A. H. & Gedan, K. B. Climate change and dead zones. Glob. Change Biol. 21, 1395–1406 (2015).

    ADS 
    Article 

    Google Scholar 

  • 6.

    Breitburg, D. et al. Declining oxygen in the global ocean and coastal waters. Science (80-) 359, eaam7240 (2018).

    Article 
    CAS 

    Google Scholar 

  • 7.

    Keeling, R. E., Körtzinger, A. & Gruber, N. Ocean deoxygenation in a warming world. Ann. Rev. Mar. Sci. 2, 199–229 (2010).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 8.

    Levin, L. A. & Breitburg, D. L. Linking coasts and seas to address ocean deoxygenation. Nat. Clim. Change 5, 401–403 (2015).

    ADS 
    Article 

    Google Scholar 

  • 9.

    Rabalais, N. N., Turner, R. E., Díaz, R. J. & Justić, D. Global change and eutrophication of coastal waters. ICES J. Mar. Sci. 66, 1528–1537 (2009).

    Article 

    Google Scholar 

  • 10.

    Diaz, R. J. & Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science (80-) 321, 926–929 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 11.

    Hofmann, A. F., Peltzer, E. T., Walz, P. M. & Brewer, P. G. Hypoxia by degrees: Establishing definitions for a changing ocean. Deep Res. Part I Oceanogr. Res. Pap. 58, 1212–1226 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 12.

    Rabalais, N. N. et al. Dynamics and distribution of natural and human-caused hypoxia. Biogeosciences 7, 585–619 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 13.

    Vaquer-Sunyer, R. & Duarte, C. M. Thresholds of hypoxia for marine biodiversity. Proc. Natl. Acad. Sci. 105, 15452–15457 (2008).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 14.

    Altieri, A. H. et al. Tropical dead zones and mass mortalities on coral reefs. Proc. Natl. Acad. Sci. U. S. A. 114, 3660–3665 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 15.

    Grantham, B. A. et al. Upwelling-driven nearshore hypoxia signals ecosystem and oceanographic changes in the northeast Pacific. Nature 429, 749–754 (2004).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 16.

    Kim, T. W., Barry, J. P. & Micheli, F. The effects of intermittent exposure to low-pH and low-oxygen conditions on survival and growth of juvenile red abalone. Biogeosciences 10, 7255–7262 (2013).

    ADS 
    Article 

    Google Scholar 

  • 17.

    Kolesar, S. E., Breitburg, D. L., Purcell, J. E. & Decker, M. B. Effects of hypoxia on Mnemiopsis leidyi, ichthyoplankton and copepods: Clearance rates and vertical habitat overlap. Mar. Ecol. Prog. Ser. 411, 173–188 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 18.

    Low, N. H. N. & Micheli, F. Lethal and functional thresholds of hypoxia in two key benthic grazers. Mar. Ecol. Prog. Ser. 594, 165–173 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 19.

    Thomas, P. & Saydur Rahman, M. Extensive reproductive disruption, ovarian masculinization and aromatase suppression in Atlantic croaker in the northern Gulf of Mexico hypoxic zone. Proc. R. Soc. B Biol. Sci. 279, 28–38 (2011).

    Article 
    CAS 

    Google Scholar 

  • 20.

    Breitburg, D. Effects of hypoxia, and the balance between hypoxia and enrichment, on coastal fishes and fisheries. Estuaries 25, 767–781 (2002).

    Article 

    Google Scholar 

  • 21.

    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).

    Article 

    Google Scholar 

  • 22.

    Pörtner, H. O. & Knust, R. Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science (80-) 315, 95–97 (2007).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 23.

    Vaquer-Sunyer, R. & Duarte, C. M. Temperature effects on oxygen thresholds for hypoxia in marine benthic organisms. Glob. Change Biol. 17, 1788–1797 (2011).

    ADS 
    Article 

    Google Scholar 

  • 24.

    Breitburg, D. L., Hondorp, D. W., Davias, L. A. & Diaz, R. J. Hypoxia, nitrogen, and fisheries: Integrating effects across local and global landscapes. Ann. Rev. Mar. Sci. 1, 329–349 (2009).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 25.

    Booth, J. A. T. et al. Natural intrusions of hypoxic, low pH water into nearshore marine environments on the California coast. Cont. Shelf. Res. 45, 108–115 (2012).

    ADS 
    Article 

    Google Scholar 

  • 26.

    Walter, R. K., Woodson, C. B., Leary, P. R. & Monismith, S. G. Connecting wind-driven upwelling and offshore stratification to nearshore internal bores and oxygen variability. J. Geophys. Res. Ocean 119, 3517–3534 (2014).

    ADS 
    Article 

    Google Scholar 

  • 27.

    Boch, C. A. et al. Local oceanographic variability influences the performance of juvenile abalone under climate change. Sci. Rep. 8, 1–12 (2018).

    CAS 
    Article 

    Google Scholar 

  • 28.

    DiMarco, S. F., Chapman, P., Walker, N. & Hetland, R. D. Does local topography control hypoxia on the eastern Texas–Louisiana shelf?. J. Mar. Syst. 80, 25–35 (2010).

    Article 

    Google Scholar 

  • 29.

    Leary, P. R. et al. “Internal tide pools” prolong kelp forest hypoxic events. Limnol. Oceanogr. 62, 2864–2878 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 30.

    Walter, R. K., Brock Woodson, C., Arthur, R. S., Fringer, O. B. & Monismith, S. G. Nearshore internal bores and turbulent mixing in southern Monterey Bay. J. Geophys. Res. Ocean 117, 1–13 (2012).

    Google Scholar 

  • 31.

    Long, W. C. & Seitz, R. D. Trophic interactions under stress: Hypoxia enhances foraging in an estuarine food web. Mar. Ecol. Prog. Ser. 362, 59–68 (2008).

    ADS 
    Article 

    Google Scholar 

  • 32.

    Kwiatkowski, L. & Orr, J. C. Diverging seasonal extremes for ocean acidification during the twenty-first centuryr. Nat. Clim. Chang. 8, 141–145 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 33.

    Safaie, A. et al. High frequency temperature variability reduces the risk of coral bleaching. Nat. Commun. 9, 1–12 (2018).

    Article 
    CAS 

    Google Scholar 

  • 34.

    Woodson, C. B. The fate and impact of internal waves in nearshore ecosystems. Ann. Rev. Mar. Sci. 10, 421–441 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 35.

    Woodson, C. B. et al. Harnessing marine microclimates for climate change adaptation and marine conservation. Conserv. Lett. 12(2), 1–9 (2018).

    Google Scholar 

  • 36.

    Micheli, F. et al. Evidence that marine reserves enhance resilience to climatic impacts. PLoS ONE 7, e40832 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 37.

    Cox, K. W. California abalones, family haliotidae. Fish. Bull. 118 28–32 (1962).

    Google Scholar 

  • 38.

    Frieder, C. A., Nam, S. H., Martz, T. R. & Levin, L. A. High temporal and spatial variability of dissolved oxygen and pH in a nearshore California kelp forest. Biogeosciences 9, 3917–3930 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 39.

    Mayol, E., Ruiz-Halpern, S., Duarte, C. M., Castilla, J. C. & Pelegrí, J. L. Coupled CO2 and O2-driven compromises to marine life in summer along the Chilean sector of the Humboldt Current System. Biogeosciences 9, 1183–1194 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 40.

    Orellana-Cepeda, E., Granados-Machuca, C. & Serrano-Esquer, J. Ceratium furca: One possible cause of mass mortality of cultured Blue-Fin Tuna at Baja California, Mexico. Harmful Algae 2002, 514–516 (2004).

    Google Scholar 

  • 41.

    Bograd, S. J. et al. Oxygen declines and the shoaling of the hypoxic boundary in the California Current. Geophys. Res. Lett. 35, 1–6 (2008).

    Article 
    CAS 

    Google Scholar 

  • 42.

    Bernardi, G., Findley, L. & Rocha-Olivares, A. Vicariance and dispersal across Baja California in disjunct marine fish populations. Evolution (N Y) 57, 1599–1609 (2003).

    Google Scholar 

  • 43.

    Haupt, A. J., Micheli, F. & Palumbi, S. R. Dispersal at a snail’s pace: Historical processes affect contemporary genetic structure in the exploited wavy top snail (Megastraea undosa). J. Hered. 104, 327–340 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 44.

    Al Najjar, M. W. Nearshore Processes of a Coastal Island: Physical Dynamics and Ecological Implications (Stanford University, 2019).

    Google Scholar 

  • 45.

    Hughes, B. B. et al. Climate mediates hypoxic stress on fish diversity and nursery function at the land-sea interface. Proc. Natl. Acad. Sci. U. S. A. 112, 8025–8030 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 46.

    Sydeman, W. J. et al. Climate change and wind intensification in coastal upwelling ecosystems. Science (80-) 345, 77–80 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 47.

    Fulton, S. et al. From fishing fish to fishing data: The role of Artisanal Fishers in Conservation and Resource Management in Mexico. In Viability and Sustainability of Small-Scale Fisheries in Latin America and The Caribbean (eds Salas, S. et al.) 151–175 (Springer International Publishing, 2019).

    Google Scholar 

  • 48.

    Chang, W., Cheng, J., Allaire, J. J., Xie, Y. & McPherson, J. shiny: Web Application Framework for R. R package version 1.4.0.2. https://cran.r-project.org/package=shiny (2020).

  • 49.

    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2020).

  • 50.

    Eerkes-Medrano, D., Menge, B. A., Sislak, C. & Langdon, C. J. Contrasting effects of hypoxic conditions on survivorship of planktonic larvae of rocky intertidal invertebrates. Mar. Ecol. Prog. Ser. 478, 139–151 (2013).

    ADS 
    Article 

    Google Scholar 

  • 51.

    Low, N. H. N. & Micheli, F. Short- and long-term impacts of variable hypoxia exposures on kelp forest sea urchins. Sci. Rep. 10, 1–9 (2020).

    CAS 
    Article 

    Google Scholar 

  • 52.

    Bograd, S. J. et al. Phenology of coastal upwelling in the California Current. Geophys. Res. Lett. 36, 1–5 (2009).

    Article 

    Google Scholar 

  • 53.

    Nam, S., Kim, H. J. & Send, U. Amplification of hypoxic and acidic events by la Nia conditions on the continental shelf off California. Geophys. Res. Lett. 38, 1–5 (2011).

    Article 
    CAS 

    Google Scholar 

  • 54.

    Rogers-Bennett, L. et al. Dinoflagellate bloom coincides with marine invertebrate mortalities in Northern California. Harmful Algae News 46, 10–11 (2012).

    Google Scholar 

  • 55.

    Chan, F. et al. Persistent spatial structuring of coastal ocean acidification in the California Current System. Sci. Rep. 7, 1–8 (2017).

    Article 
    CAS 

    Google Scholar 

  • 56.

    Montgomery, D. W., Simpson, S. D., Engelhard, G. H., Birchenough, S. N. R. & Wilson, R. W. Rising CO2 enhances hypoxia tolerance in a marine fish. Sci. Rep. 9, 1–10 (2019).

    CAS 
    Article 

    Google Scholar 

  • 57.

    Boch, C. A. et al. Effects of current and future coastal upwelling conditions on the fertilization success of the red abalone (Haliotis rufescens). ICES J. Mar. Sci. 74, 1125–1134 (2017).

    Article 

    Google Scholar 

  • 58.

    Gobler, C. J. & Baumann, H. Hypoxia and acidification in marine ecosystems: Coupled dynamics and effects on
    ocean life. Biol. Lett. 12, 20150976 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 


  • Source: Ecology - nature.com

    A graduate student who goes to extremes

    MIT students and alumni “hack” Hong Kong Kowloon East