in

Vibratory behaviour produces different vibrations patterns in presence of reproductives in a subterranean termite species

  • 1.

    Greenfield, M. D. Signalers and Receivers: Mechanisms and Evolution of Arthropod Communication (Oxford University Press, 2002).

    Google Scholar 

  • 2.

    Wiley, R. H. Signal detection and animal communication. In Advances in the Study of Behavior Vol. 36 217–247 (Academic Press, 2006).

  • 3.

    Brumm, H. Animal Communication and Noise Vol. 2 (Springer, 2013).

    Book 

    Google Scholar 

  • 4.

    Leonhardt, S. D., Menzel, F., Nehring, V. & Schmitt, T. Ecology and evolution of communication in social insects. Cell 164, 1277–1287 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 5.

    Tannure-Nascimento, I. C., Nascimento, F. S. & Zucchi, R. The look of royalty: Visual and odour signals of reproductive status in a paper wasp. Proc. R. Soc. B Biol. Sci. 275, 2555–2561 (2008).

    Article 

    Google Scholar 

  • 6.

    Higham, J. P. & Hebets, E. A. An introduction to multimodal communication. Behav. Ecol. Sociobiol. 67, 1381–1388 (2013).

    Article 

    Google Scholar 

  • 7.

    Hölldobler, B. Multimodal signals in ant communication. J. Comp. Physiol. A Sens. Neural Behav. Physiol. 184, 129–141 (1999).

    Article 

    Google Scholar 

  • 8.

    Partan, S. R. & Marler, P. Issues in the classification of multimodal communication signals. Am. Nat. 166, 231–245 (2005).

    PubMed 
    Article 

    Google Scholar 

  • 9.

    Delattre, O. et al. Chemical and vibratory signals used in alarm communication in the termite Reticulitermes flavipes (Rhinotermitidae). Insectes Soc. 66, 265–272 (2019).

    Article 

    Google Scholar 

  • 10.

    Vander Meer, R. K., Breed, M. D., Winston, M. & Espelie, K. E. Pheromone Communication in Social Insects: Ants, Wasps, Bees, and Termites (CRC Press, 1998).

    Google Scholar 

  • 11.

    Hölldobler, B. & Wilson, E. O. The Ants (Springer, 1990).

    Book 

    Google Scholar 

  • 12.

    Cohen, E. & Moussian, B. Extracellular Composite Matrices in Arthropods (Springer, 2016).

    Book 

    Google Scholar 

  • 13.

    Tibbetts, E. A. & Lindsay, R. Visual signals of status and rival assessment in Polistes dominulus paper wasps. Biol. Lett. 4, 237–239 (2008).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 14.

    Chiu, Y.-K., Mankin, R. W. & Lin, C.-C. Context-dependent stridulatory responses of Leptogenys kitteli (Hymenoptera: Formicidae) to social, prey, and disturbance stimuli. Ann. Entomol. Soc. Am. 104, 1012–1020 (2011).

    Article 

    Google Scholar 

  • 15.

    Schneider, S. S. & Lewis, L. A. The vibration signal, modulatory communication and the organization of labor in honey bees, Apis mellifera. Apidologie 35, 117–131 (2004).

    Article 

    Google Scholar 

  • 16.

    Hrncir, M., Maia-Silva, C., Cabe, S. I. M. & Farina, W. M. The recruiter’s excitement—Features of thoracic vibrations during the honey bee’s waggle dance related to food source profitability. J. Exp. Biol. 214, 4055–4064 (2011).

    PubMed 
    Article 

    Google Scholar 

  • 17.

    Evans, T. A., Inta, R., Lai, J. C. S. & Lenz, M. Foraging vibration signals attract foragers and identify food size in the drywood termite, Cryptotermes secundus. Insectes Soc. 54, 374–382 (2007).

    Article 

    Google Scholar 

  • 18.

    Kweskin, M. P. Jigging in the fungus-growing ant Cyphomyrmex costatus: A response to collembolan garden invaders?. Insectes Soc. 51, 158–162 (2004).

    Article 

    Google Scholar 

  • 19.

    Stuart, A. M. Studies on the communication of alarm in the termite Zootermopsis nevadensis (Hagen), Isoptera. Physiol. Zool. 36, 85–96 (1963).

    Article 

    Google Scholar 

  • 20.

    Howse, P. E. On the significance of certain oscillatory movements of termites. Insectes Soc. 12, 335–345 (1965).

    Article 

    Google Scholar 

  • 21.

    Delattre, O. et al. Complex alarm strategy in the most basal termite species. Behav. Ecol. Sociobiol. 69, 1945–1955 (2015).

    Article 

    Google Scholar 

  • 22.

    Reinhard, J. & Clément, J.-L. Alarm reaction of European reticulitermes termites to soldier head capsule volatiles (Isoptera, Rhinotermitidae). J. Insect Behav. 15, 95–107 (2002).

    Article 

    Google Scholar 

  • 23.

    Whitman, J. G. & Forschler, B. T. Observational notes on short-lived and infrequent behaviors displayed by Reticulitermes flavipes (Isoptera: Rhinotermitidae). Ann. Entomol. Soc. Am. 100, 763–771 (2007).

    Article 

    Google Scholar 

  • 24.

    Hertel, H., Hanspach, A. & Plarre, R. Differences in alarm responses in drywood and subterranean termites (Isoptera: Kalotermitidae and Rhinotermitidae) to physical stimuli. J. Insect Behav. 24, 106–115 (2011).

    Article 

    Google Scholar 

  • 25.

    Rosengaus, R. B., Jordan, C., Lefebvre, M. L. & Traniello, J. F. A. Pathogen alarm behavior in a termite: A new form of communication in social insects. Naturwissenschaften 86, 544–548 (1999).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 26.

    Sun, Q., Hampton, J. D., Haynes, K. F. & Zhou, X. Cooperative policing behavior regulates reproductive division of labor in a termite. bioRxiv https://doi.org/10.1101/2020.02.04.934315 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Park, Y. I. & Raina, A. K. Light sensitivity in workers and soldiers of the Formosan subterranean termite, Coptotermes formosanus (Isoptera: Rhinotermitidae). Sociobiology 45, 367–376 (2005).

    Google Scholar 

  • 28.

    Hager, F. A. & Kirchner, W. H. Vibrational long-distance communication in the termites Macrotermes natalensis and Odontotermes sp. J. Exp. Biol. 216, 3249–3256 (2013).

    PubMed 
    Article 

    Google Scholar 

  • 29.

    Mignini, M. & Lorenzi, M. C. Vibratory signals predict rank and offspring caste ratio in a social insect. Behav. Ecol. Sociobiol. 69, 1739–1748 (2015).

    Article 

    Google Scholar 

  • 30.

    Holman, L., Jørgensen, C. G., Nielsen, J. & d’Ettorre, P. Identification of an ant queen pheromone regulating worker sterility. Proc. Biol. Sci. 277, 3793–3800 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Sun, Q., Haynes, K. F., Hampton, J. D. & Zhou, X. Sex-specific inhibition and stimulation of worker-reproductive transition in a termite. Naturwissenschaften 104, 79 (2017).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 32.

    Manfredini, F. et al. Molecular and social regulation of worker division of labour in fire ants. Mol. Ecol. 23, 660–672 (2014).

    PubMed 
    Article 

    Google Scholar 

  • 33.

    Lockett, G. A., Almond, E. J., Huggins, T. J., Parker, J. D. & Bourke, A. F. G. Gene expression differences in relation to age and social environment in queen and worker bumble bees. Exp. Gerontol. 77, 52–61 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 34.

    Sun, Q., Hampton, J. D., Merchant, A., Haynes, K. F. & Zhou, X. Cooperative policing behaviour regulates reproductive division of labour in a termite. Proc. R. Soc. B Biol. Sci. 287, 20200780 (2020).

    Article 

    Google Scholar 

  • 35.

    Funaro, C. F., Böröczky, K., Vargo, E. L. & Schal, C. Identification of a queen and king recognition pheromone in the subterranean termite Reticulitermes flavipes. Proc. Natl. Acad. Sci. U. S. A. 115, 3888–3893 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 36.

    Ruhland, F., Moulin, M., Choppin, M., Meunier, J. & Lucas, C. Reproductives and eggs trigger worker vibration in a subterranean termite. Ecol. Evol. 10, 5892–5898 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 37.

    Sieber, R. & Leuthold, R. H. Behavioural elements and their meaning in incipient laboratory colonies of the fungus-growing Termite Macrotermes michaelseni (Isoptera: Macrotermitinae). Insectes Soc. 28, 371–382 (1981).

    Article 

    Google Scholar 

  • 38.

    Maistrello, L. & Sbrenna, G. Frequency of some behavioural patterns in colonies of Kalotermes flavicollis (Isoptera Kalotermitidae): The importance of social interactions and vibratory movements as mechanisms for social integration. Ethol. Ecol. Evol. 8, 365–375 (1996).

    Article 

    Google Scholar 

  • 39.

    Šobotník, J., Hanus, R. & Roisin, Y. Agonistic Behavior of the termite Prorhinotermes canalifrons (Isoptera: Rhinotermitidae). J. Insect Behav. 21, 521–534 (2008).

    Article 

    Google Scholar 

  • 40.

    Cristaldo, P. F. et al. The nature of alarm communication in Constrictotermes cyphergaster (Blattodea: Termitoidea: Termitidae): The integration of chemical and vibroacoustic signals. Biol. Open 4, 1649–1659 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 41.

    Yamanaka, Y., Iwata, R. & Kiriyama, S. Cannibalism associated with artificial wounds on the bodies of Reticulitermes speratus workers and soldiers (Isoptera: Rhinotermitidae). Insectes Soc. 66, 107–117 (2019).

    Article 

    Google Scholar 

  • 42.

    Funaro, C. F., Schal, C. & Vargo, E. L. Queen and king recognition in the subterranean termite, Reticulitermes flavipes: Evidence for royal recognition pheromones. PLoS ONE 14, 3888–3893 (2019).

    Article 
    CAS 

    Google Scholar 

  • 43.

    Perdereau, E., Bagnères, A.-G., Dupont, S. & Dedeine, F. High occurrence of colony fusion in a European population of the American termite Reticulitermes flavipes. Insectes Soc. 57, 393–402 (2010).

    Article 

    Google Scholar 

  • 44.

    Brossette, L. et al. Termite’s royal cradle: Does colony foundation success differ between two subterranean species?. Insectes Soc. 64, 515–523 (2017).

    Article 

    Google Scholar 

  • 45.

    Lucas, C. et al. When predator odour makes groups stronger: Effects on behavioural and chemical adaptations in two termite species. Ecol. Entomol. 43, 513–524 (2018).

    Article 

    Google Scholar 

  • 46.

    Miyaguni, Y., Sugio, K. & Tsuji, K. Refinement of methods for sexing instars and caste members in Neotermes koshunensis (Isoptera, Kalotermitidae). Sociobiology 59, 1217–1222 (2012).

    Google Scholar 

  • 47.

    Friard, O. & Gamba, M. BORIS: A free, versatile open-source event-logging software for video/audio coding and live observations. Methods Ecol. Evol. 7, 1325–1330 (2016).

    Article 

    Google Scholar 

  • 48.

    Gamboa, G. J., Reeve, H. K. & Holmes, W. G. Conceptual issues and methodology in kin-recognition research: A critical discussion. Ethology 88, 109–127 (2010).

    Article 

    Google Scholar 

  • 49.

    Oberst, S., Nava-Baro, E., Lai, J. C. S. & Evans, T. A. An innovative signal processing method to extract ants’ walking signals. Acoust. Aust. 43, 87–96 (2015).

    Article 

    Google Scholar 

  • 50.

    Oberst, S., Lai, J. C. S. & Evans, T. A. Physical basis of vibrational behaviour: Channel properties, noise and excitation signal extraction. In Biotremology: Studying Vibrational Behavior (ed. Hill, P. S. M.) 53–78 (Springer, Cham, 2019). https://doi.org/10.1007/978-3-030-22293-2_5.

    Google Scholar 

  • 51.

    Stanley, D. W. & Nelson, D. R. Insect Lipids: Chemistry, Biochemistry, and Biology (U of Nebraska Press, 1993).

    Google Scholar 

  • 52.

    Wyatt, T. D. Pheromones and Animal Behaviour: Communication by Smell and Taste (Cambridge University Press, 2003).

    Book 

    Google Scholar 

  • 53.

    Matsuura, K. et al. Identification of a pheromone regulating caste differentiation in termites. Proc. Natl. Acad. Sci. 107, 12963–12968 (2010).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 54.

    Nguyen, T. T. & Akino, T. Worker aggression of ant Lasius japonicus enhanced by termite soldier—Specific secretion as an alarm pheromone of Reticulitermes speratus. Entomol. Sci. 15, 422–429 (2012).

    Article 

    Google Scholar 

  • 55.

    Šobotník, J., Jirošová, A. & Hanus, R. Chemical warfare in termites. J. Insect Physiol. 56, 1012–1021 (2010).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 56.

    Evans, T. A. et al. Termites assess wood size by using vibration signals. Proc. Natl. Acad. Sci. USA 102, 3732–3737 (2005).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 57.

    George, E. A. & Brockmann, A. Social modulation of individual differences in dance communication in honey bees. Behav. Ecol. Sociobiol. 73, 41 (2019).

    Article 

    Google Scholar 

  • 58.

    Tautz, J., Roces, F. & Hölldobler, B. Use of a sound-based vibratome by leaf-cutting ants. Science 267, 84–87 (1995).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 59.

    Hill, P. S. M. How do animals use substrate-borne vibrations as an information source?. Naturwissenschaften 96, 1355–1371 (2009).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 60.

    Röhrig, A., Kirchner, W. H. & Leuthold, R. H. Vibrational alarm communication in the African fungus-growing termite genus Macrotermes (Isoptera, Termitidae). Insectes Soc. 46, 71–77 (1999).

    Article 

    Google Scholar 

  • 61.

    Hill, P. S. M. Vibrational Communication in Animals (Harvard University Press, 2008).

    Google Scholar 

  • 62.

    Cocroft, R. B. & Rodríguez, R. L. The behavioral ecology of insect vibrational communication. Bioscience 55, 323–334 (2005).

    Article 

    Google Scholar 

  • 63.

    Korb, J., Weil, T., Hoffmann, K., Foster, K. R. & Rehli, M. A gene necessary for reproductive suppression in termites. Science 324, 758 (2009).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 64.

    Penick, C. A., Trobaugh, B., Brent, C. S. & Liebig, J. Head-butting as an early indicator of reproductive disinhibition in the termite Zootermopsis nevadensis. J. Insect Behav. 26, 23–34 (2013).

    Article 

    Google Scholar 

  • 65.

    Ishikawa, Y. & Miura, T. Hidden aggression in termite workers: Plastic defensive behaviour dependent upon social context. Anim. Behav. 83, 737–745 (2012).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Ekotrope makes building energy-efficient homes easier

    Using mechanics for cleaner membranes