Greenfield, M. D. Signalers and Receivers: Mechanisms and Evolution of Arthropod Communication (Oxford University Press, 2002).
Wiley, R. H. Signal detection and animal communication. In Advances in the Study of Behavior Vol. 36 217–247 (Academic Press, 2006).
Brumm, H. Animal Communication and Noise Vol. 2 (Springer, 2013).
Google Scholar
Leonhardt, S. D., Menzel, F., Nehring, V. & Schmitt, T. Ecology and evolution of communication in social insects. Cell 164, 1277–1287 (2016).
Google Scholar
Tannure-Nascimento, I. C., Nascimento, F. S. & Zucchi, R. The look of royalty: Visual and odour signals of reproductive status in a paper wasp. Proc. R. Soc. B Biol. Sci. 275, 2555–2561 (2008).
Google Scholar
Higham, J. P. & Hebets, E. A. An introduction to multimodal communication. Behav. Ecol. Sociobiol. 67, 1381–1388 (2013).
Google Scholar
Hölldobler, B. Multimodal signals in ant communication. J. Comp. Physiol. A Sens. Neural Behav. Physiol. 184, 129–141 (1999).
Google Scholar
Partan, S. R. & Marler, P. Issues in the classification of multimodal communication signals. Am. Nat. 166, 231–245 (2005).
Google Scholar
Delattre, O. et al. Chemical and vibratory signals used in alarm communication in the termite Reticulitermes flavipes (Rhinotermitidae). Insectes Soc. 66, 265–272 (2019).
Google Scholar
Vander Meer, R. K., Breed, M. D., Winston, M. & Espelie, K. E. Pheromone Communication in Social Insects: Ants, Wasps, Bees, and Termites (CRC Press, 1998).
Hölldobler, B. & Wilson, E. O. The Ants (Springer, 1990).
Google Scholar
Cohen, E. & Moussian, B. Extracellular Composite Matrices in Arthropods (Springer, 2016).
Google Scholar
Tibbetts, E. A. & Lindsay, R. Visual signals of status and rival assessment in Polistes dominulus paper wasps. Biol. Lett. 4, 237–239 (2008).
Google Scholar
Chiu, Y.-K., Mankin, R. W. & Lin, C.-C. Context-dependent stridulatory responses of Leptogenys kitteli (Hymenoptera: Formicidae) to social, prey, and disturbance stimuli. Ann. Entomol. Soc. Am. 104, 1012–1020 (2011).
Google Scholar
Schneider, S. S. & Lewis, L. A. The vibration signal, modulatory communication and the organization of labor in honey bees, Apis mellifera. Apidologie 35, 117–131 (2004).
Google Scholar
Hrncir, M., Maia-Silva, C., Cabe, S. I. M. & Farina, W. M. The recruiter’s excitement—Features of thoracic vibrations during the honey bee’s waggle dance related to food source profitability. J. Exp. Biol. 214, 4055–4064 (2011).
Google Scholar
Evans, T. A., Inta, R., Lai, J. C. S. & Lenz, M. Foraging vibration signals attract foragers and identify food size in the drywood termite, Cryptotermes secundus. Insectes Soc. 54, 374–382 (2007).
Google Scholar
Kweskin, M. P. Jigging in the fungus-growing ant Cyphomyrmex costatus: A response to collembolan garden invaders?. Insectes Soc. 51, 158–162 (2004).
Google Scholar
Stuart, A. M. Studies on the communication of alarm in the termite Zootermopsis nevadensis (Hagen), Isoptera. Physiol. Zool. 36, 85–96 (1963).
Google Scholar
Howse, P. E. On the significance of certain oscillatory movements of termites. Insectes Soc. 12, 335–345 (1965).
Google Scholar
Delattre, O. et al. Complex alarm strategy in the most basal termite species. Behav. Ecol. Sociobiol. 69, 1945–1955 (2015).
Google Scholar
Reinhard, J. & Clément, J.-L. Alarm reaction of European reticulitermes termites to soldier head capsule volatiles (Isoptera, Rhinotermitidae). J. Insect Behav. 15, 95–107 (2002).
Google Scholar
Whitman, J. G. & Forschler, B. T. Observational notes on short-lived and infrequent behaviors displayed by Reticulitermes flavipes (Isoptera: Rhinotermitidae). Ann. Entomol. Soc. Am. 100, 763–771 (2007).
Google Scholar
Hertel, H., Hanspach, A. & Plarre, R. Differences in alarm responses in drywood and subterranean termites (Isoptera: Kalotermitidae and Rhinotermitidae) to physical stimuli. J. Insect Behav. 24, 106–115 (2011).
Google Scholar
Rosengaus, R. B., Jordan, C., Lefebvre, M. L. & Traniello, J. F. A. Pathogen alarm behavior in a termite: A new form of communication in social insects. Naturwissenschaften 86, 544–548 (1999).
Google Scholar
Sun, Q., Hampton, J. D., Haynes, K. F. & Zhou, X. Cooperative policing behavior regulates reproductive division of labor in a termite. bioRxiv https://doi.org/10.1101/2020.02.04.934315 (2020).
Google Scholar
Park, Y. I. & Raina, A. K. Light sensitivity in workers and soldiers of the Formosan subterranean termite, Coptotermes formosanus (Isoptera: Rhinotermitidae). Sociobiology 45, 367–376 (2005).
Hager, F. A. & Kirchner, W. H. Vibrational long-distance communication in the termites Macrotermes natalensis and Odontotermes sp. J. Exp. Biol. 216, 3249–3256 (2013).
Google Scholar
Mignini, M. & Lorenzi, M. C. Vibratory signals predict rank and offspring caste ratio in a social insect. Behav. Ecol. Sociobiol. 69, 1739–1748 (2015).
Google Scholar
Holman, L., Jørgensen, C. G., Nielsen, J. & d’Ettorre, P. Identification of an ant queen pheromone regulating worker sterility. Proc. Biol. Sci. 277, 3793–3800 (2010).
Google Scholar
Sun, Q., Haynes, K. F., Hampton, J. D. & Zhou, X. Sex-specific inhibition and stimulation of worker-reproductive transition in a termite. Naturwissenschaften 104, 79 (2017).
Google Scholar
Manfredini, F. et al. Molecular and social regulation of worker division of labour in fire ants. Mol. Ecol. 23, 660–672 (2014).
Google Scholar
Lockett, G. A., Almond, E. J., Huggins, T. J., Parker, J. D. & Bourke, A. F. G. Gene expression differences in relation to age and social environment in queen and worker bumble bees. Exp. Gerontol. 77, 52–61 (2016).
Google Scholar
Sun, Q., Hampton, J. D., Merchant, A., Haynes, K. F. & Zhou, X. Cooperative policing behaviour regulates reproductive division of labour in a termite. Proc. R. Soc. B Biol. Sci. 287, 20200780 (2020).
Google Scholar
Funaro, C. F., Böröczky, K., Vargo, E. L. & Schal, C. Identification of a queen and king recognition pheromone in the subterranean termite Reticulitermes flavipes. Proc. Natl. Acad. Sci. U. S. A. 115, 3888–3893 (2018).
Google Scholar
Ruhland, F., Moulin, M., Choppin, M., Meunier, J. & Lucas, C. Reproductives and eggs trigger worker vibration in a subterranean termite. Ecol. Evol. 10, 5892–5898 (2020).
Google Scholar
Sieber, R. & Leuthold, R. H. Behavioural elements and their meaning in incipient laboratory colonies of the fungus-growing Termite Macrotermes michaelseni (Isoptera: Macrotermitinae). Insectes Soc. 28, 371–382 (1981).
Google Scholar
Maistrello, L. & Sbrenna, G. Frequency of some behavioural patterns in colonies of Kalotermes flavicollis (Isoptera Kalotermitidae): The importance of social interactions and vibratory movements as mechanisms for social integration. Ethol. Ecol. Evol. 8, 365–375 (1996).
Google Scholar
Šobotník, J., Hanus, R. & Roisin, Y. Agonistic Behavior of the termite Prorhinotermes canalifrons (Isoptera: Rhinotermitidae). J. Insect Behav. 21, 521–534 (2008).
Google Scholar
Cristaldo, P. F. et al. The nature of alarm communication in Constrictotermes cyphergaster (Blattodea: Termitoidea: Termitidae): The integration of chemical and vibroacoustic signals. Biol. Open 4, 1649–1659 (2015).
Google Scholar
Yamanaka, Y., Iwata, R. & Kiriyama, S. Cannibalism associated with artificial wounds on the bodies of Reticulitermes speratus workers and soldiers (Isoptera: Rhinotermitidae). Insectes Soc. 66, 107–117 (2019).
Google Scholar
Funaro, C. F., Schal, C. & Vargo, E. L. Queen and king recognition in the subterranean termite, Reticulitermes flavipes: Evidence for royal recognition pheromones. PLoS ONE 14, 3888–3893 (2019).
Google Scholar
Perdereau, E., Bagnères, A.-G., Dupont, S. & Dedeine, F. High occurrence of colony fusion in a European population of the American termite Reticulitermes flavipes. Insectes Soc. 57, 393–402 (2010).
Google Scholar
Brossette, L. et al. Termite’s royal cradle: Does colony foundation success differ between two subterranean species?. Insectes Soc. 64, 515–523 (2017).
Google Scholar
Lucas, C. et al. When predator odour makes groups stronger: Effects on behavioural and chemical adaptations in two termite species. Ecol. Entomol. 43, 513–524 (2018).
Google Scholar
Miyaguni, Y., Sugio, K. & Tsuji, K. Refinement of methods for sexing instars and caste members in Neotermes koshunensis (Isoptera, Kalotermitidae). Sociobiology 59, 1217–1222 (2012).
Friard, O. & Gamba, M. BORIS: A free, versatile open-source event-logging software for video/audio coding and live observations. Methods Ecol. Evol. 7, 1325–1330 (2016).
Google Scholar
Gamboa, G. J., Reeve, H. K. & Holmes, W. G. Conceptual issues and methodology in kin-recognition research: A critical discussion. Ethology 88, 109–127 (2010).
Google Scholar
Oberst, S., Nava-Baro, E., Lai, J. C. S. & Evans, T. A. An innovative signal processing method to extract ants’ walking signals. Acoust. Aust. 43, 87–96 (2015).
Google Scholar
Oberst, S., Lai, J. C. S. & Evans, T. A. Physical basis of vibrational behaviour: Channel properties, noise and excitation signal extraction. In Biotremology: Studying Vibrational Behavior (ed. Hill, P. S. M.) 53–78 (Springer, Cham, 2019). https://doi.org/10.1007/978-3-030-22293-2_5.
Stanley, D. W. & Nelson, D. R. Insect Lipids: Chemistry, Biochemistry, and Biology (U of Nebraska Press, 1993).
Wyatt, T. D. Pheromones and Animal Behaviour: Communication by Smell and Taste (Cambridge University Press, 2003).
Google Scholar
Matsuura, K. et al. Identification of a pheromone regulating caste differentiation in termites. Proc. Natl. Acad. Sci. 107, 12963–12968 (2010).
Google Scholar
Nguyen, T. T. & Akino, T. Worker aggression of ant Lasius japonicus enhanced by termite soldier—Specific secretion as an alarm pheromone of Reticulitermes speratus. Entomol. Sci. 15, 422–429 (2012).
Google Scholar
Šobotník, J., Jirošová, A. & Hanus, R. Chemical warfare in termites. J. Insect Physiol. 56, 1012–1021 (2010).
Google Scholar
Evans, T. A. et al. Termites assess wood size by using vibration signals. Proc. Natl. Acad. Sci. USA 102, 3732–3737 (2005).
Google Scholar
George, E. A. & Brockmann, A. Social modulation of individual differences in dance communication in honey bees. Behav. Ecol. Sociobiol. 73, 41 (2019).
Google Scholar
Tautz, J., Roces, F. & Hölldobler, B. Use of a sound-based vibratome by leaf-cutting ants. Science 267, 84–87 (1995).
Google Scholar
Hill, P. S. M. How do animals use substrate-borne vibrations as an information source?. Naturwissenschaften 96, 1355–1371 (2009).
Google Scholar
Röhrig, A., Kirchner, W. H. & Leuthold, R. H. Vibrational alarm communication in the African fungus-growing termite genus Macrotermes (Isoptera, Termitidae). Insectes Soc. 46, 71–77 (1999).
Google Scholar
Hill, P. S. M. Vibrational Communication in Animals (Harvard University Press, 2008).
Cocroft, R. B. & Rodríguez, R. L. The behavioral ecology of insect vibrational communication. Bioscience 55, 323–334 (2005).
Google Scholar
Korb, J., Weil, T., Hoffmann, K., Foster, K. R. & Rehli, M. A gene necessary for reproductive suppression in termites. Science 324, 758 (2009).
Google Scholar
Penick, C. A., Trobaugh, B., Brent, C. S. & Liebig, J. Head-butting as an early indicator of reproductive disinhibition in the termite Zootermopsis nevadensis. J. Insect Behav. 26, 23–34 (2013).
Google Scholar
Ishikawa, Y. & Miura, T. Hidden aggression in termite workers: Plastic defensive behaviour dependent upon social context. Anim. Behav. 83, 737–745 (2012).
Google Scholar
Source: Ecology - nature.com