in

Viral load, not food availability or temperature, predicts colony longevity in an invasive eusocial wasp with plastic life history

  • 1.

    Seeley, T. D. Honey bee colonies are group-level adaptive units. Am. Nat. 150, S22–S41 (1997).

    PubMed 
    Article 

    Google Scholar 

  • 2.

    Negroni, M. A., Jongepier, E., Feldmeyer, B., Kramer, B. H. & Foitzik, S. Life history evolution in social insects: A female perspective. Curr. Opin. Insect Sci. 16, 51–57 (2016).

    PubMed 
    Article 

    Google Scholar 

  • 3.

    Wilson, E. O. The Insect Societies. (Belknap Press, 1971).

  • 4.

    Boomsma, J. J., Huszár, D. B. & Pedersen, J. S. The evolution of multiqueen breeding in eusocial lineages with permanent physically differentiated castes. Anim. Behav. 92, 241–252 (2014).

    Article 

    Google Scholar 

  • 5.

    Ratnieks, F. L. W., Vetter, R. S. & Visscher, P. K. A polygynous nest of Vespula pensylvanica from California with a discussion of possible factors influencing the evolution of polygyny in Vespula. Insect. Soc. 43, 401–410 (1996).

    Article 

    Google Scholar 

  • 6.

    Wilson, E. E., Mullen, L. M. & Holway, D. A. Life history plasticity magnifies the ecological effects of a social wasp invasion. Proc. Natl. Acad. Sci. USA. 106, 12809–12813 (2009).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 7.

    Gambino, P. Reproductive plasticity of Vespula pensylvanica (Hymenoptera: Vespidae) on Maui and Hawaii Islands, USA. N. Z. J. Zool. 18, 139–149 (1991).

    Article 

    Google Scholar 

  • 8.

    Hanna, C. et al. Colony social structure in native and invasive populations of the social wasp Vespula pensylvanica. Biol. Invasions 16, 283–294 (2014).

    Article 

    Google Scholar 

  • 9.

    Ross, K. G. & Matthews, R. W. Two polygynous overwintered Vespula squamosa colonies from the southeastern US (Hymenoptera: Vespidae). Florida Entomol. 65, 176–184 (1982).

    Article 

    Google Scholar 

  • 10.

    Visscher, P. K. & Vetter, R. S. Annual and multi-year nests of the western yellowjacket, Vespula pensylvanica, in California. Insect. Soc. 50, 160–166 (2003).

    Article 

    Google Scholar 

  • 11.

    Plunkett, G. M., Moller, H., Hamilton, C., Clapperton, B. K. & Thomas, C. D. Overwintering colonies of German (Vespula germanica) and common wasps (Vespula vulgaris) (Hymenoptera: Vespidae) in New Zealand. N. Z. J. Zool. 16, 345–353 (1989).

    Article 

    Google Scholar 

  • 12.

    Goodisman, M. A., Matthews, R. W., Spradbery, J. P., Carew, M. E. & Crozier, R. H. Reproduction and recruitment in perennial colonies of the introduced wasp Vespula germanica. J. Hered. 92, 346–349 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 13.

    Gambino, P. & Loope, L. L. Yellowjacket (Vespula pensylvanica): Biology and abatement in the National Parks of Hawaii.  Technical report of the Cooperatuve National Parks Resources Study Unit, Honolulu (1992).

  • 14.

    Wilson, E. E. & Holway, D. A. Multiple mechanisms underlie displacement of solitary Hawaiian Hymenoptera by an invasive social wasp. Ecology 91, 3294–3302 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 15.

    Wilson Rankin, E. E. Diet subsidies and climate may contribute to Vespula invasion impacts. In 17th Congress of the International Union for the Study of Social Insects (IUSSI), Cairns, Australia, 13-18 July 2014 (2014).

  • 16.

    Seeley, T. D. & Tarpy, D. R. Queen promiscuity lowers disease within honeybee colonies. Proc. R. Soc. B Biol. Sci. 274, 67–72 (2007).

    Article 

    Google Scholar 

  • 17.

    Berthoud, H., Imdorf, A., Haueter, M., Radloff, S. & Neumann, P. Virus infections and winter losses of honey bee colonies (Apis mellifera). J. Apic. Res. 49, 60–65 (2010).

    Article 

    Google Scholar 

  • 18.

    Otti, O. & Schmid-Hempel, P. A field experiment on the effect of Nosema bombi in colonies of the bumblebee Bombus terrestris. Ecol. Entomol. 33, 577–582 (2008).

    Article 

    Google Scholar 

  • 19.

    Cremer, S., Pull, C. D. & Fürst, M. A. Social immunity: Emergence and evolution of colony-level disease protection. Annu. Rev. Entomol. 63, 105–123 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 20.

    Graystock, P., Yates, K., Darvill, B., Goulson, D. & Hughes, W. O. H. Emerging dangers: Deadly effects of an emergent parasite in a new pollinator host. J. Invertebr. Pathol. 114, 114–119 (2013).

    PubMed 
    Article 

    Google Scholar 

  • 21.

    Fürst, M. A., McMahon, D. P., Osborne, J. L., Paxton, R. J. & Brown, M. J. F. Disease associations between honeybees and bumblebees as a threat to wild pollinators. Nature 506, 364–366 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 22.

    McMahon, D. P. et al. A sting in the spit: widespread cross-infection of multiple RNA viruses across wild and managed bees. J. Anim. Ecol. 84, 615–624 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 23.

    Alger, S. A., Alexander Burnham, P., Boncristiani, H. F. & Brody, A. K. RNA virus spillover from managed honeybees (Apis mellifera) to wild bumblebees (Bombus spp.). PLoS One 14, 1–13 (2018).

  • 24.

    Dobelmann, J. et al. Fitness in invasive social wasps: The role of variation in viral load, immune response and paternity in predicting nest size and reproductive output. Oikos 126, 1208–1218 (2017).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Torchin, M. E., Lafferty, K. D., Dobson, A. P., McKenzie, V. J. & Kuris, A. M. Introduced species and their missing parasites. Nature 421, 628–630 (2003).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 26.

    Lester, P. J. et al. No evidence of enemy release in pathogen and microbial communities of common wasps (Vespula vulgaris) in their native and introduced range. PLoS One 10, e0121358 (2015).

  • 27.

    Mordecai, G. J. et al. Moku virus; a new Iflavirus found in wasps, honey bees and Varroa. Sci. Rep. 6, srep34983 (2016).

  • 28.

    Loope, K. J., Baty, J. W., Lester, P. J. & Wilson Rankin, E. E. Pathogen shifts in a honeybee predator following the arrival of the Varroa mite. Proc. R. Soc. B Biol. Sci. 286 (2019).

  • 29.

    Brettell, L. E., Schroeder, D. C. & Martin, S. J. RNAseq analysis reveals virus diversity within hawaiian apiary insect communities. Viruses 11 (2019).

  • 30.

    Moret, Y. & Schmid-Hempel, P. Immune responses of bumblebee workers as a function of individual and colony age: Senescence versus plastic adjustment of the immune function. Oikos 118, 371–378 (2009).

    Article 

    Google Scholar 

  • 31.

    Budge, G. E. et al. Identifying bacterial predictors of honey bee health. J. Invertebr. Pathol. 141, 41–44 (2016).

    PubMed 
    Article 

    Google Scholar 

  • 32.

    Schmid-Hempel, R. & Tognazzo, M. Molecular divergence defines two distinct lineages of Crithidia bombi (Trypanosomatidae), parasites of bumblebees. J. Eukaryot. Microbiol. 57, 337–345 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 33.

    Akre, R. D., Hill, W. B., Donald, J. F. M. & Garnett, W. B. Foraging distances of Vespula pensylvanica workers (Hymenoptera: Vespidae). J. Kansas Entomol. Soc. 48, 12–16 (1975).

    Google Scholar 

  • 34.

    Seeley, T. D. & Smith, M. L. Crowding honeybee colonies in apiaries can increase their vulnerability to the deadly ectoparasite Varroa destructor. Apidologie 46, 716–727 (2015).

    Article 

    Google Scholar 

  • 35.

    McArt, S. H., Koch, H., Irwin, R. E. & Adler, L. S. Arranging the bouquet of disease: Floral traits and the transmission of plant and animal pathogens. Ecol. Lett. 17, 624–636 (2014).

    PubMed 
    Article 

    Google Scholar 

  • 36.

    Peck, D. T. & Seeley, T. D. Mite bombs or robber lures? The roles of drifting and robbing in Varroa destructor transmission from collapsing honey bee colonies to their neighbors. PLoS ONE 14, 1–14 (2019).

    Article 
    CAS 

    Google Scholar 

  • 37.

    Yañez, O. et al. Bee viruses: Routes of infection in Hymenoptera. Front. Microbiol. 11, 1–22 (2020).

    Article 

    Google Scholar 

  • 38.

    Malham, J. P., Rees, J. S., Alspach, P. A., Beggs, J. R. & Moller, H. Traffic rate as an index of colony size in Vespula wasps. N. Z. J. Zool. 18, 105–109 (1991).

    Article 

    Google Scholar 

  • 39.

    Brettell, L. et al. A comparison of deformed wing virus in deformed and asymptomatic honey bees. Insects 8, 28 (2017).

    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • 40.

    Garigliany, M. et al. Moku virus in invasive Asian Hornets, Belgium, 2016. Emerg. Infect. Dis. 23, 2109–2112 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 41.

    Garigliany, M., El Agrebi, N., Franssen, M., Hautier, L. & Saegerman, C. Moku virus detection in honey bees, Belgium, 2018. Transbound. Emerg. Dis. 66, 43–46 (2019).

    PubMed 
    Article 

    Google Scholar 

  • 42.

    Highfield, A. et al. Detection and replication of Moku virus in honey bees and social wasps. Viruses 12, 607 (2020).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • 43.

    Felden, A. et al. Viral and fungal pathogens associated with Pneumolaelaps niutirani (Acari: Laelapidae): A mite found in diseased nests of Vespula wasps. Insect. Soc. 67, 83–93 (2020).

    Article 

    Google Scholar 

  • 44.

    Lindström, A., Korpela, S. & Fries, I. Horizontal transmission of Paenibacillus larvae spores between honey bee (Apis mellifera) colonies through robbing. Apidologie 39, 515–522 (2008).

    Article 

    Google Scholar 

  • 45.

    Smith, M. L. The honey bee parasite Nosema ceranae: Transmissible via food exchange?. PLoS ONE 7, 1–6 (2012).

    Google Scholar 

  • 46.

    Folly, A. J., Koch, H., Stevenson, P. C. & Brown, M. J. F. Larvae act as a transient transmission hub for the prevalent bumblebee parasite Crithidia bombi. J. Invertebr. Pathol. 148, 81–85 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 47.

    Loope, K. J., Millar, J. G. & Wilson Rankin, E. E. Weak nestmate discrimination behavior in native and invasive populations of a yellowjacket wasp (Vespula pensylvanica). Biol. Invasions 20, 3431–3444 (2018).

  • 48.

    Yañez, O., Gauthier, L., Chantawannakul, P. & Neumann, P. Endosymbiotic bacteria in honey bees: Arsenophonus spp. are not transmitted transovarially. FEMS Microbiol. Lett. 363, fnw147 (2016).

  • 49.

    McNally, L. C. & Schneider, S. S. Spatial distribution and nesting biology of colonies of the African honey bee Apis mellifera scutellata (Hymenoptera: Apidae) in Botswana, Africa. Environ. Entomol. 25, 643–652 (1996).

    Article 

    Google Scholar 

  • 50.

    Seeley, T. D. Honey bees of the Arnot forest: A population of feral colonies persisting with Varroa destructor in the northeastern United States. Apidologie 38, 19–29 (2007).

    Article 

    Google Scholar 

  • 51.

    Arundel, J., Oldroyd, B. P. & Winter, S. Modelling estimates of honey bee (Apis spp.) colony density from drones. Ecol. Model. 267, 1–10 (2013).

  • 52.

    Graystock, P., Goulson, D. & Hughes, W. O. H. Parasites in bloom: Flowers aid dispersal and transmission of pollinator parasites within and between bee species. Proc. R. Soc. B Biol. Sci. 282, 20151371 (2015).

    Article 

    Google Scholar 

  • 53.

    Graystock, P., Meeus, I., Smagghe, G., Goulson, D. & Hughes, W. O. H. The effects of single and mixed infections of Apicystis bombi and deformed wing virus in Bombus terrestris. Parasitology 143, 358–365 (2016).

    PubMed 
    Article 

    Google Scholar 

  • 54.

    Benaets, K. et al. Covert deformed wing virus infections have long-term deleterious effects on honeybee foraging and survival. Proc. R. Soc. B Biol. Sci. 284, 20162149 (2017).

    Article 

    Google Scholar 

  • 55.

    Natsopoulou, M. E. et al. The virulent, emerging genotype B of deformed wing virus is closely linked to overwinter honeybee worker loss. Sci. Rep. 7, 5242 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 56.

    Gambino, P., Medeiros, A. C. & Loope, L. L. Invasion and colonization of upper elevations on East Maui (Hawaii) by Vespula pensylvanica (Hymenoptera: Vespidae). Ann. Entomol. Soc. Am. 83, 1088–1095 (1990).

    Article 

    Google Scholar 

  • 57.

    Akre, R. D. & Reed, H. C. Population cycles of yellowjackets (Hymenoptera: Vespinae) in the Pacific Northwest. Environ. Entomol. 10, 267–274 (1981).

    Article 

    Google Scholar 

  • 58.

    Giambelluca, T. W. et al. Online rainfall atlas of Hawai’i. Bull. Am. Meteorol. Soc. 94, 313–316 (2013).

    ADS 
    Article 

    Google Scholar 

  • 59.

    Marion, G. M. et al. Open-top designs for manipulating field temperature in high-latitude ecosystems. Glob. Chang. Biol. 3, 20–32 (1997).

    Article 

    Google Scholar 

  • 60.

    de Miranda, J. R. et al. Standard methods for virus research in Apis mellifera. J. Apic. Res. 52, 1–56 (2013).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 61.

    Johnson, D. H. Estimating nest success : The Mayfield method and an alternative. Auk 96, 651–661 (1979).

    Google Scholar 

  • 62.

    R Core Team. R: A Language and Environment for Statistical Computing. (2020).

  • 63.

    Therneau, T. A Package for Survival Analysis in S. (2015).

  • 64.

    Bivand, R. S. & Wong, D. W. S. Comparing implementations of global and local indicators of spatial association. TEST 27, 716–748 (2018).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • 65.

    Kahle, D. & Wickham, H. ggmap: Spatial visualization with ggplot2. R J. 5, 144–161 (2013).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Semiparametric model selection for identification of environmental covariates related to adult groundfish catches and weights

    3 Questions: Nadia Christidi on the arts and the future of water