Seeley, T. D. Honey bee colonies are group-level adaptive units. Am. Nat. 150, S22–S41 (1997).
Google Scholar
Negroni, M. A., Jongepier, E., Feldmeyer, B., Kramer, B. H. & Foitzik, S. Life history evolution in social insects: A female perspective. Curr. Opin. Insect Sci. 16, 51–57 (2016).
Google Scholar
Wilson, E. O. The Insect Societies. (Belknap Press, 1971).
Boomsma, J. J., Huszár, D. B. & Pedersen, J. S. The evolution of multiqueen breeding in eusocial lineages with permanent physically differentiated castes. Anim. Behav. 92, 241–252 (2014).
Google Scholar
Ratnieks, F. L. W., Vetter, R. S. & Visscher, P. K. A polygynous nest of Vespula pensylvanica from California with a discussion of possible factors influencing the evolution of polygyny in Vespula. Insect. Soc. 43, 401–410 (1996).
Google Scholar
Wilson, E. E., Mullen, L. M. & Holway, D. A. Life history plasticity magnifies the ecological effects of a social wasp invasion. Proc. Natl. Acad. Sci. USA. 106, 12809–12813 (2009).
Google Scholar
Gambino, P. Reproductive plasticity of Vespula pensylvanica (Hymenoptera: Vespidae) on Maui and Hawaii Islands, USA. N. Z. J. Zool. 18, 139–149 (1991).
Google Scholar
Hanna, C. et al. Colony social structure in native and invasive populations of the social wasp Vespula pensylvanica. Biol. Invasions 16, 283–294 (2014).
Google Scholar
Ross, K. G. & Matthews, R. W. Two polygynous overwintered Vespula squamosa colonies from the southeastern US (Hymenoptera: Vespidae). Florida Entomol. 65, 176–184 (1982).
Google Scholar
Visscher, P. K. & Vetter, R. S. Annual and multi-year nests of the western yellowjacket, Vespula pensylvanica, in California. Insect. Soc. 50, 160–166 (2003).
Google Scholar
Plunkett, G. M., Moller, H., Hamilton, C., Clapperton, B. K. & Thomas, C. D. Overwintering colonies of German (Vespula germanica) and common wasps (Vespula vulgaris) (Hymenoptera: Vespidae) in New Zealand. N. Z. J. Zool. 16, 345–353 (1989).
Google Scholar
Goodisman, M. A., Matthews, R. W., Spradbery, J. P., Carew, M. E. & Crozier, R. H. Reproduction and recruitment in perennial colonies of the introduced wasp Vespula germanica. J. Hered. 92, 346–349 (2001).
Google Scholar
Gambino, P. & Loope, L. L. Yellowjacket (Vespula pensylvanica): Biology and abatement in the National Parks of Hawaii. Technical report of the Cooperatuve National Parks Resources Study Unit, Honolulu (1992).
Wilson, E. E. & Holway, D. A. Multiple mechanisms underlie displacement of solitary Hawaiian Hymenoptera by an invasive social wasp. Ecology 91, 3294–3302 (2010).
Google Scholar
Wilson Rankin, E. E. Diet subsidies and climate may contribute to Vespula invasion impacts. In 17th Congress of the International Union for the Study of Social Insects (IUSSI), Cairns, Australia, 13-18 July 2014 (2014).
Seeley, T. D. & Tarpy, D. R. Queen promiscuity lowers disease within honeybee colonies. Proc. R. Soc. B Biol. Sci. 274, 67–72 (2007).
Google Scholar
Berthoud, H., Imdorf, A., Haueter, M., Radloff, S. & Neumann, P. Virus infections and winter losses of honey bee colonies (Apis mellifera). J. Apic. Res. 49, 60–65 (2010).
Google Scholar
Otti, O. & Schmid-Hempel, P. A field experiment on the effect of Nosema bombi in colonies of the bumblebee Bombus terrestris. Ecol. Entomol. 33, 577–582 (2008).
Google Scholar
Cremer, S., Pull, C. D. & Fürst, M. A. Social immunity: Emergence and evolution of colony-level disease protection. Annu. Rev. Entomol. 63, 105–123 (2018).
Google Scholar
Graystock, P., Yates, K., Darvill, B., Goulson, D. & Hughes, W. O. H. Emerging dangers: Deadly effects of an emergent parasite in a new pollinator host. J. Invertebr. Pathol. 114, 114–119 (2013).
Google Scholar
Fürst, M. A., McMahon, D. P., Osborne, J. L., Paxton, R. J. & Brown, M. J. F. Disease associations between honeybees and bumblebees as a threat to wild pollinators. Nature 506, 364–366 (2014).
Google Scholar
McMahon, D. P. et al. A sting in the spit: widespread cross-infection of multiple RNA viruses across wild and managed bees. J. Anim. Ecol. 84, 615–624 (2015).
Google Scholar
Alger, S. A., Alexander Burnham, P., Boncristiani, H. F. & Brody, A. K. RNA virus spillover from managed honeybees (Apis mellifera) to wild bumblebees (Bombus spp.). PLoS One 14, 1–13 (2018).
Dobelmann, J. et al. Fitness in invasive social wasps: The role of variation in viral load, immune response and paternity in predicting nest size and reproductive output. Oikos 126, 1208–1218 (2017).
Google Scholar
Torchin, M. E., Lafferty, K. D., Dobson, A. P., McKenzie, V. J. & Kuris, A. M. Introduced species and their missing parasites. Nature 421, 628–630 (2003).
Google Scholar
Lester, P. J. et al. No evidence of enemy release in pathogen and microbial communities of common wasps (Vespula vulgaris) in their native and introduced range. PLoS One 10, e0121358 (2015).
Mordecai, G. J. et al. Moku virus; a new Iflavirus found in wasps, honey bees and Varroa. Sci. Rep. 6, srep34983 (2016).
Loope, K. J., Baty, J. W., Lester, P. J. & Wilson Rankin, E. E. Pathogen shifts in a honeybee predator following the arrival of the Varroa mite. Proc. R. Soc. B Biol. Sci. 286 (2019).
Brettell, L. E., Schroeder, D. C. & Martin, S. J. RNAseq analysis reveals virus diversity within hawaiian apiary insect communities. Viruses 11 (2019).
Moret, Y. & Schmid-Hempel, P. Immune responses of bumblebee workers as a function of individual and colony age: Senescence versus plastic adjustment of the immune function. Oikos 118, 371–378 (2009).
Google Scholar
Budge, G. E. et al. Identifying bacterial predictors of honey bee health. J. Invertebr. Pathol. 141, 41–44 (2016).
Google Scholar
Schmid-Hempel, R. & Tognazzo, M. Molecular divergence defines two distinct lineages of Crithidia bombi (Trypanosomatidae), parasites of bumblebees. J. Eukaryot. Microbiol. 57, 337–345 (2010).
Google Scholar
Akre, R. D., Hill, W. B., Donald, J. F. M. & Garnett, W. B. Foraging distances of Vespula pensylvanica workers (Hymenoptera: Vespidae). J. Kansas Entomol. Soc. 48, 12–16 (1975).
Seeley, T. D. & Smith, M. L. Crowding honeybee colonies in apiaries can increase their vulnerability to the deadly ectoparasite Varroa destructor. Apidologie 46, 716–727 (2015).
Google Scholar
McArt, S. H., Koch, H., Irwin, R. E. & Adler, L. S. Arranging the bouquet of disease: Floral traits and the transmission of plant and animal pathogens. Ecol. Lett. 17, 624–636 (2014).
Google Scholar
Peck, D. T. & Seeley, T. D. Mite bombs or robber lures? The roles of drifting and robbing in Varroa destructor transmission from collapsing honey bee colonies to their neighbors. PLoS ONE 14, 1–14 (2019).
Google Scholar
Yañez, O. et al. Bee viruses: Routes of infection in Hymenoptera. Front. Microbiol. 11, 1–22 (2020).
Google Scholar
Malham, J. P., Rees, J. S., Alspach, P. A., Beggs, J. R. & Moller, H. Traffic rate as an index of colony size in Vespula wasps. N. Z. J. Zool. 18, 105–109 (1991).
Google Scholar
Brettell, L. et al. A comparison of deformed wing virus in deformed and asymptomatic honey bees. Insects 8, 28 (2017).
Google Scholar
Garigliany, M. et al. Moku virus in invasive Asian Hornets, Belgium, 2016. Emerg. Infect. Dis. 23, 2109–2112 (2017).
Google Scholar
Garigliany, M., El Agrebi, N., Franssen, M., Hautier, L. & Saegerman, C. Moku virus detection in honey bees, Belgium, 2018. Transbound. Emerg. Dis. 66, 43–46 (2019).
Google Scholar
Highfield, A. et al. Detection and replication of Moku virus in honey bees and social wasps. Viruses 12, 607 (2020).
Google Scholar
Felden, A. et al. Viral and fungal pathogens associated with Pneumolaelaps niutirani (Acari: Laelapidae): A mite found in diseased nests of Vespula wasps. Insect. Soc. 67, 83–93 (2020).
Google Scholar
Lindström, A., Korpela, S. & Fries, I. Horizontal transmission of Paenibacillus larvae spores between honey bee (Apis mellifera) colonies through robbing. Apidologie 39, 515–522 (2008).
Google Scholar
Smith, M. L. The honey bee parasite Nosema ceranae: Transmissible via food exchange?. PLoS ONE 7, 1–6 (2012).
Folly, A. J., Koch, H., Stevenson, P. C. & Brown, M. J. F. Larvae act as a transient transmission hub for the prevalent bumblebee parasite Crithidia bombi. J. Invertebr. Pathol. 148, 81–85 (2017).
Google Scholar
Loope, K. J., Millar, J. G. & Wilson Rankin, E. E. Weak nestmate discrimination behavior in native and invasive populations of a yellowjacket wasp (Vespula pensylvanica). Biol. Invasions 20, 3431–3444 (2018).
Yañez, O., Gauthier, L., Chantawannakul, P. & Neumann, P. Endosymbiotic bacteria in honey bees: Arsenophonus spp. are not transmitted transovarially. FEMS Microbiol. Lett. 363, fnw147 (2016).
McNally, L. C. & Schneider, S. S. Spatial distribution and nesting biology of colonies of the African honey bee Apis mellifera scutellata (Hymenoptera: Apidae) in Botswana, Africa. Environ. Entomol. 25, 643–652 (1996).
Google Scholar
Seeley, T. D. Honey bees of the Arnot forest: A population of feral colonies persisting with Varroa destructor in the northeastern United States. Apidologie 38, 19–29 (2007).
Google Scholar
Arundel, J., Oldroyd, B. P. & Winter, S. Modelling estimates of honey bee (Apis spp.) colony density from drones. Ecol. Model. 267, 1–10 (2013).
Graystock, P., Goulson, D. & Hughes, W. O. H. Parasites in bloom: Flowers aid dispersal and transmission of pollinator parasites within and between bee species. Proc. R. Soc. B Biol. Sci. 282, 20151371 (2015).
Google Scholar
Graystock, P., Meeus, I., Smagghe, G., Goulson, D. & Hughes, W. O. H. The effects of single and mixed infections of Apicystis bombi and deformed wing virus in Bombus terrestris. Parasitology 143, 358–365 (2016).
Google Scholar
Benaets, K. et al. Covert deformed wing virus infections have long-term deleterious effects on honeybee foraging and survival. Proc. R. Soc. B Biol. Sci. 284, 20162149 (2017).
Google Scholar
Natsopoulou, M. E. et al. The virulent, emerging genotype B of deformed wing virus is closely linked to overwinter honeybee worker loss. Sci. Rep. 7, 5242 (2017).
Google Scholar
Gambino, P., Medeiros, A. C. & Loope, L. L. Invasion and colonization of upper elevations on East Maui (Hawaii) by Vespula pensylvanica (Hymenoptera: Vespidae). Ann. Entomol. Soc. Am. 83, 1088–1095 (1990).
Google Scholar
Akre, R. D. & Reed, H. C. Population cycles of yellowjackets (Hymenoptera: Vespinae) in the Pacific Northwest. Environ. Entomol. 10, 267–274 (1981).
Google Scholar
Giambelluca, T. W. et al. Online rainfall atlas of Hawai’i. Bull. Am. Meteorol. Soc. 94, 313–316 (2013).
Google Scholar
Marion, G. M. et al. Open-top designs for manipulating field temperature in high-latitude ecosystems. Glob. Chang. Biol. 3, 20–32 (1997).
Google Scholar
de Miranda, J. R. et al. Standard methods for virus research in Apis mellifera. J. Apic. Res. 52, 1–56 (2013).
Google Scholar
Johnson, D. H. Estimating nest success : The Mayfield method and an alternative. Auk 96, 651–661 (1979).
R Core Team. R: A Language and Environment for Statistical Computing. (2020).
Therneau, T. A Package for Survival Analysis in S. (2015).
Bivand, R. S. & Wong, D. W. S. Comparing implementations of global and local indicators of spatial association. TEST 27, 716–748 (2018).
Google Scholar
Kahle, D. & Wickham, H. ggmap: Spatial visualization with ggplot2. R J. 5, 144–161 (2013).
Google Scholar
Source: Ecology - nature.com