Warren, J. & Mackenzie, S. Why are all colour combinations not equally represented as flower-colour polymorphisms?. New Phytol. 151, 237–241 (2001).
Google Scholar
Armbruster, S., Fenster, C. & Dudash, M. Pollination ‘principles’ revisited: specialization, pollination syndromes, and the evolution of flowers. Scandanavian Assoc. Pollinat. Ecol. 39, 179–200 (2000).
Hargreaves, A. L., Harder, L. D. & Johnson, S. D. Consumptive emasculation: the ecological and evolutionary consequences of pollen theft. Biol. Rev. 84, 259–276 (2009).
Google Scholar
Hansen, D. M., van der Niet, T. & Johnson, S. D. Floral signposts: testing the significance of visual ‘nectar guides’ for pollinator behaviour and plant fitness. Proc. R. Soc. B Biol. Sci. 279, 634–639 (2012).
Google Scholar
Rosas-Guerrero, V. et al. A quantitative review of pollination syndromes: do floral traits predict effective pollinators?. Ecol. Lett. 17, 388–400 (2014).
Google Scholar
Narbona, E., Wang, H., Ortiz, P. L., Arista, M. & Imbert, E. Flower colour polymorphism in the Mediterranean Basin: occurrence, maintenance and implications for speciation. Plant Biol. 20, 8–20 (2018).
Google Scholar
Altshuler, D. L. Flower color, hummingbird pollination, and habitat irradiance in four neotropical forests1. Biotropica 35, 344 (2003).
Google Scholar
Riordan, C. E., Ault, J. G., Langreth, S. G. & Keithly, J. S. Cryptosporidium parvum Cpn60 targets a relict organelle. Curr. Genet. 44, 138–147 (2003).
Google Scholar
Rodríguez-Gironés, M. A. & Santamaría, L. Why are so many bird flowers red?. PLoS Biol. 2, 1515–1519 (2004).
Google Scholar
Whibley, A. C. et al. Evolutionary paths underlying flower color variation in Antirrhinum. Science (80-.) 313, 963–966 (2006).
Google Scholar
Papiorek, S. et al. Bees, birds and yellow flowers: pollinator-dependent convergent evolution of UV patterns. Plant Biol. 18, 46–55 (2016).
Google Scholar
Wilson, P., Castellanos, M., Wolfe, A. D. & Thomson, J. D. Shifts between bee and bird pollination in penstemons. Plant-Pollinat. Interact. Spec. Gen. 3, 47–68 (2006).
Wilson, P., Castellanos, M. C., Hogue, J. N., Thomson, J. D. & Armbruster, W. S. A multivariate search for pollination syndromes among penstemons. Oikos 104, 345–361 (2004).
Google Scholar
Sutherland, S. D. & Vickery, R. K. Jr. On the relative importance of floral color, shape, and nectar rewards in attracting pollinators to Mimulus. Gt. Basin Nat. 53, 107–117 (1993).
Wester, P. & Lunau, K. Plant-Pollinator Communication. Advances in Botanical Research Vol. 82 (Elsevier, 2017).
de Camargo, M. G. G. et al. How flower colour signals allure bees and hummingbirds: a community-level test of the bee avoidance hypothesis. New Phytol. 222, 1112–1122 (2019).
Google Scholar
van der Kooi, C. J., Dyer, A. G., Kevan, P. G. & Lunau, K. Functional significance of the optical properties of flowers for visual signalling. Ann. Bot. https://doi.org/10.1093/aob/mcy119 (2018).
Google Scholar
Castellanos, M. C., Wilson, P. & Thomson, J. D. ‘ Anti-bee ’ and ‘ pro-bird ’ changes during the evolution of hummingbird pollination in Penstemon flowers. J. Evol. Biol. 17, 876–885 (2004).
Google Scholar
del Carmen Salas-Arcos, L., Lara, C., Castillo-Guevara, C., Cuautle, M. & Ornelas, J. F. “Pro-bird” floral traits discourage bumblebee visits to Penstemon gentianoides (Plantaginaceae), a mixed-pollinated herb. Sci. Nat. 106, 1–11 (2019).
Google Scholar
Armbruster, W. S. Evolution of floral morphology and function: an integrative approach to adaptation, constraint, and compromise in Dalechampia (Euphorbiaceae). Flor. Biol. https://doi.org/10.1007/978-1-4613-1165-2_9 (1996).
Google Scholar
Chittka, L. & Schürkens, S. Successful invasion of a floral market. Nature 411, 653 (2001).
Google Scholar
Ellis, T. J. & Field, D. L. Repeated gains in yellow and anthocyanin pigmentation in flower colour transitions in the Antirrhineae. Ann. Bot. 117, 1133–1140 (2016).
Google Scholar
Tanaka, Y., Sasaki, N. & Ohmiya, A. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J. 54, 733–749 (2008).
Google Scholar
Lázaro, A., Lundgren, R. & Totland, Ø. Pollen limitation, species’ floral traits and pollinator visitation: different relationships in contrasting communities. Oikos 124, 174–186 (2015).
Google Scholar
Jones, K. N. & Reithel, J. S. Pollinator-mediated selection on a flower color polymorphism in experimental populations of Anthirrhinum (Scrophulariaceae). Am. J. Bot. 88, 447–454 (2001).
Google Scholar
Teixido, A. L., Barrio, M. & Valladares, F. Size matters: understanding the conflict faced by large flowers in mediterranean environments. Bot. Rev. 82, 204–228 (2016).
Google Scholar
Ortiz, P. L., Fernández-Díaz, P., Pareja, D., Escudero, M. & Arista, M. Do visual traits honestly signal floral rewards at community level?. Funct. Ecol. 35, 369–383 (2021).
Google Scholar
Fenster, C. B., Cheely, G., Dudash, M. R. & Reynolds, R. J. Nectar reward and advertisement in hummingbird. Am. J. Bot. 93, 1800 (2006).
Google Scholar
Simpson, B. B., Neff, J. L. & Simpson, B. B. Floral rewards: alternatives to pollen and nectar. Ann. Mo. Bot. Gard. 68, 301–322 (2015).
Google Scholar
Canto, A., Herrera, C. M., García, I. M., Pérez, R. & Vaz, M. Intraplant variation in nectar traits in Helleborus foetidus (Ranunculaceae) as related to floral phase, environmental conditions and pollinator exposure. Flora Morphol. Distrib. Funct. Ecol. Plants 206, 668–675 (2011).
Parachnowitsch, A. L., Manson, J. S. & Sletvold, N. Evolutionary ecology of nectar. Ann. Bot. https://doi.org/10.1093/aob/mcy132 (2018).
Google Scholar
Gómez, J. M. et al. Association between floral traits and rewards in Erysimum mediohispanicum (Brassicaceae). Ann. Bot. 101, 1413–1420 (2008).
Google Scholar
Worley, A. C. & Barrett, S. C. H. Evolution of floral display in Eichhornia paniculata (Pontederiaceae): genetic correlations between flower size and number. J. Evol. Biol. 14, 469–481 (2001).
Google Scholar
Lunau, K. The ecology and evolution of visual pollen signals. Plant Syst. Evol. 222, 89–111 (2000).
Google Scholar
Nicholls, E. & Hempel de Ibarra, N. Assessment of pollen rewards by foraging bees. Funct. Ecol. 31, 76–87 (2017).
Google Scholar
Tang, L.-L. & Huang, S.-Q. Evidence for reductions in floral attractants with increased selfing rates in two heterandrous species. New Phytol. https://doi.org/10.1111/j.1469-8137.2007.02115.x (2007).
Google Scholar
Faegri, K. & Van Der Pijl, L. Principles of Pollination Ecology (Elsevier, 2013).
Dellinger, A. S. Pollination syndromes in the 21st century: where do we stand and where may we go?. New Phytol. https://doi.org/10.1111/nph.16793 (2020).
Google Scholar
Kostyun, J. L., Gibson, M. J. S., King, C. M. & Moyle, L. C. A simple genetic architecture and low constraint allow rapid floral evolution in a diverse and recently radiating plant genus. New Phytol. 223, 1009–1022 (2019).
Google Scholar
Roguz, K. et al. Diversity of nectar amino acids in the Fritillaria (Liliaceae) genus: ecological and evolutionary implications. Sci. Rep. 9, 1–12 (2019).
Google Scholar
Roguz, K. et al. Functional diversity of nectary structure and nectar composition in the genus Fritillaria (liliaceae). Front. Plant Sci. 9, 1–21 (2018).
Google Scholar
Zych, M. & Stpiczyńska, M. Neither protogynous nor obligatory out-crossed: Pollination biology and breeding system of the European Red List Fritillaria meleagris L. (Liliaceae). Plant Biol. 14, 285–294 (2012).
Google Scholar
Day, P. D. et al. Evolutionary relationships in the medicinally important genus Fritillaria L. (Liliaceae). Mol. Phylogenet. Evol. 80, 11–19 (2014).
Google Scholar
Hayashi, K. Molecular systematics of Lilium and allied genera (Liliaceae): phylogenetic relationships among Lilium and related genera based on the rbcL and matK gene sequence data. Plant Species Biol. 15, 73–93 (2000).
Google Scholar
Stpiczyńska, M., Nepi, M. & Zych, M. Nectaries and male-biased nectar production in protandrous flowers of a perennial umbellifer Angelica sylvestris L. (Apiaceae). Plant Syst. Evol. https://doi.org/10.1007/s00606-014-1152-3 (2014).
Google Scholar
Hill, L. A taxonomic history of Japanese endemic Fritillaria (Liliaceae). Kew Bull. 66, 227–240 (2018).
Google Scholar
Kiani, M. et al. Iran supports a great share of biodiversity and floristic endemism for Fritillaria spp. (Liliaceae): a review. Plant Divers. 39, 245–262 (2017).
Google Scholar
Shaw, A. J. Phylogeny of the Sphgnpsida based on chloroplast and nuclear DNA sequences. Bryologist 103, 277–306 (2000).
Google Scholar
Rønsted, N., Law, S., Thornton, H., Fay, M. F. & Chase, M. W. Molecular phylogenetic evidence for the monophyly of Fritillaria and Lilium (Liliaceae; Liliales) and the infrageneric classification of Fritillaria. Mol. Phylogenet. Evol. 35, 509–527 (2005).
Google Scholar
Tekşen, M. & Aytaç, Z. The revision of the genus Fritillaria L. (Liliaceae) in the Mediterranean region (Turkey). Turk. J. Bot. 35, 447–478 (2011).
Roguz, K., Hill, L., Roguz, A. & Zych, M. Evolution of bird and insect flower traits in Fritillaria L. (Liliaceae). Front. Plant Sci. 12, 656783 (2020).
Google Scholar
Zaharof, E. Variation and taxonomy of Fritillaria graeca (Liliaceae) in Greece. Plant Syst. Evol. 154, 41–61 (1986).
Google Scholar
Búrquez, A. & Burquez, A. Blue tits, Parus caeruleus, as pollinators of the crown imperial, Fritillaria imperialis, in Britain. Oikos 55, 335 (1989).
Google Scholar
Peters, W. S., Pirl, M., Gottsberger, G. & Peters, D. Pollination of the crown imperial Fritillaria imperialis by great tits Parus major. J. Ornithol. 136, 207–212 (1995).
Google Scholar
Pendegrass, K. & Robinson, A. A recovery plan for Fritillaria gentneri (Gentner’s fritillary). Agric. U.S.F.a.W. Serv. (2005).
Zox, H. Ecology of black lily (Fritillaria camschatcensis): a Washington State sensitive species. Douglasia (2008).
Cronk, Q. & Ojeda, I. Bird-pollinated flowers in an evolutionary and molecular context. J. Exp. Bot. 59, 715–727 (2008).
Google Scholar
Lunau, K. & Verhoeven, C. Wie Bienen Blumen sehen: Falschfarbenaufnahmen von Blüten. Biol. Unserer Zeit 47, 120–127 (2017).
Google Scholar
Kranas, H., Spalik, K. & Banasiak, Ł. MatPhylobi, 0.1 (University of Warsaw, 2018).
Kuraku, S., Zmasek, C. M., Nishimura, O. & Katoh, K. Leaves facilitates on-demand exploration of metazoan gene family trees on MAFFT sequence alignment server with enhanced interactivity. Nucleic Acids Res. https://doi.org/10.1093/nar/gkt389 (2013).
Google Scholar
Maddison, W. P. & Maddison, D. R. Mesquite: a modular system for evolutionary analysis. Evolution 62, 1103–1118 (2018).
Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinform. Appl. 30, 1312–1313 (2014).
Google Scholar
Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. https://doi.org/10.1093/ve/vey016 (2018).
Google Scholar
Kim, J. S. & Kim, J. H. Updated molecular phylogenetic analysis, dating and biogeographical history of the lily family (Liliaceae: Liliales). Bot. J. Linn. Soc. 187, 579–593 (2018).
Google Scholar
Cockerell, T. D. A. Two new plants from the tertiary rocks of the west. Torrey Bot. Soc. 14, 135–137 (1914).
Ettingshausen, C. B. III. ‘ Report on Phyto-Palaeontologieal Investigations of Fossil Flora of Alum Bay.’ By Dr. (1AD).
Conran, J. G., Carpenter, R. J. & Jordan, G. J. Early Eocene Ripogonum (Liliales: Ripogonaceae) leaf macrofossils from southern Australia. Aust. Syst. Bot. 22, 219–228 (2009).
Google Scholar
Lanfear, R., Calcott, B., Ho, S. Y. W. & Guindon, S. PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. https://doi.org/10.1093/molbev/mss020 (2012).
Google Scholar
Paradis, E. & Schliep, K. Phylogenetics ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics https://doi.org/10.1093/bioinformatics/bty633 (2019).
Google Scholar
Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).
Google Scholar
Garland, T., Dickerman, A. W., Janis, C. M. & Jones, J. A. Phylogenetic Analysis of Covariance by Computer Simulation. vol. 42, 1993. https://academic.oup.com/sysbio/article/42/3/265/1629506 (Accessed 09 March 2021).
Orme, C. D. L. The caper package: comparative analyses in phylogenetics and evolution in R, 1–36, 2012. See http://caper.r-forge.r-project.org/. (Accessed 09 March 2021).
TEAM, R. C. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).
Dyer, A. G. et al. Parallel evolution of angiosperm colour signals: common evolutionary pressures linked to hymenopteran vision. Proc. R. Soc. B Biol. Sci. 279, 3606–3615 (2012).
Google Scholar
Ollerton, J. Reconciling ecological processes with phylogenetic patterns: the apparent paradox of plant-pollinator systems. J. Ecol. 84, 767–769 (1996).
Google Scholar
Wessinger, C. A. & Rausher, M. D. Predictability and irreversibility of genetic changes associated with flower color evolution in Penstemon barbatus. Evolution (N. Y.) 68, 1058–1070 (2014).
Google Scholar
Wittmann, D., Radtke, R., Cure, J. R. & Schifino-Wittmann, M. T. Coevolved reproductive strategies in the oligolectic bee Callonychium petuniae (Apoidea, Andrenidae) and three purple flowered Petunia species (Solanaceae) in southern Brazil. J. Zool. Syst. Evol. Res. 28, 157–165 (1990).
Google Scholar
Chittka, L. & Waser, N. M. Why red flowers are not invisible to bees. Isr. J. Plant Sci. 45, 169–183 (1997).
Google Scholar
Kołodziejska-Degórska, I. & Zych, M. Bees substitute birds in pollination of ornitogamous climber Campsis radicans (L.) seem. in Poland. Acta Soc. Bot. Pol. 75, 79–85 (2006).
Google Scholar
Mayr, G. New specimens of the early oligocene old world hummingbird Eurotrochilus inexpectatus. J. Ornithol. 148, 105–111 (2007).
Google Scholar
Mayr, G. Old world fossil record of modern-type hummingbirds. Science (80-.) 304, 861–864 (2004).
Google Scholar
Schiestl, F. P. & Johnson, S. D. Pollinator-mediated evolution of floral signals. Trends Ecol. Evol. 28, 307–315 (2013).
Google Scholar
Daumer, K. Blumenfarben, wie sie die Bienen sehen. Z. Vgl. Physiol. 41, 49–110 (1958).
Kevan, P. G. Floral colours in the high Arctic with reference to insect flower relations and pollination. Can. J. Bot. 50, 2289–2316 (1972).
Google Scholar
Chittka, L., Shmida, A., Troje, N. & Menzel, R. Ultraviolet as a component of flower reflections, and the colour perception of hymenoptera. Vis. Res. 34, 1489–1508 (1994).
Google Scholar
Lunau, K. Stamens and mimic stamens as components of floral colour patterns. Bot. Jahrbücher für Syst. Pflanzengeschichte und Pflanzengeographie 127, 13–41 (2006).
Google Scholar
Koski, M. H. & Ashman, T. L. Dissecting pollinator responses to a ubiquitous ultraviolet floral pattern in the wild. Funct. Ecol. 28, 868–877 (2014).
Google Scholar
Menzel, R. & Shmida, A. The ecology of flower colours and the natural colour vision of insect pollinators: the Israeli flora as a study case. Biol. Rev. 68, 81–120 (1993).
Google Scholar
van der Kooi, C. J. & Stavenga, D. G. Vividly coloured poppy flowers due to dense pigmentation and strong scattering in thin petals. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 205, 363–372 (2019).
Google Scholar
Kevan, P., Giurfa, M. & Chittka, L. Why are there so many and so few white flowers?. Trends Plant Sci. 1, 280–284 (1996).
Google Scholar
Kapustjansky, A., Chittka, L. & Spaethe, J. Bees use three-dimensional information to improve target detection. Naturwissenschaften 97, 229–233 (2010).
Google Scholar
Chittka, L. & Raine, N. E. Recognition of flowers by pollinators. Curr. Opin. Plant Biol. 9, 428–435 (2006).
Google Scholar
Hansen, D. M., Olesen, J. M., Mione, T., Johnson, S. D. & Müller, C. B. Coloured nectar: Distribution, ecology, and evolution of an enigmatic floral trait. Biol. Rev. 82, 83–111 (2007).
Google Scholar
Raguso, R. A. Start making scents: the challenge of integrating chemistry into pollination ecology. Entomol. Exp. Appl. 128, 196–207 (2008).
Google Scholar
Sapir, Y., Shmida, A. & Ne’eman, G. Morning floral heat as a reward to the pollinators of the Oncocyclus irises. Oecologia 147, 53–59 (2006).
Google Scholar
Bazzaz, F. A. & Carslon, R. W. Photosynthetic contribution of flowers and seeds to reproductive effort of an annual colonizer. New Phytol. 82, 223–232 (1979).
Google Scholar
Source: Ecology - nature.com