in

Vulnerability to collapse of coral reef ecosystems in the Western Indian Ocean

  • 1.

    Nicholson, E., Keith, D. A. & Wilcove, D. S. Assessing the threat status of ecological communities. Conserv. Biol. 23, 259–274 (2009).

    Google Scholar 

  • 2.

    Bland, L. M. et al. Developing a standardized definition of ecosystem collapse for risk assessment. Front. Ecol. Environ. 16, 29–36 (2018).

    Google Scholar 

  • 3.

    Rockström, J. et al. Planetary boundaries: exploring the safe operating space for humanity. Ecol. Soc. 14, 32 (2009).

    Google Scholar 

  • 4.

    The Global Assessment Report on Biodiversity and Ecosystem Services: Summary for Policy Makers (IPBES, 2019); https://ipbes.net/sites/default/files/2020-02/ipbes_global_assessment_report_summary_for_policymakers_en.pdf

  • 5.

    Souter, D. et al. (eds) Status of Coral Reefs of the World: 2020 Report (International Coral Reef Initiative, 2021).

  • 6.

    Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).

    CAS 

    Google Scholar 

  • 7.

    Beyer, H. L. et al. Risk-sensitive planning for conserving coral reefs under rapid climate change. Conserv. Lett. 109, e12587 (2018).

    Google Scholar 

  • 8.

    Miloslavich, P. et al. Essential ocean variables for global sustained observations of biodiversity and ecosystem changes. Glob. Change Biol. 24, 2416–2433 (2018).

    Google Scholar 

  • 9.

    Díaz-Pérez, L. et al. Coral reef health indices versus the biological, ecological and functional diversity of fish and coral assemblages in the Caribbean Sea. PLoS ONE 11, e0161812 (2016).

    Google Scholar 

  • 10.

    Obura, D. O. et al. Coral reef monitoring, reef assessment technologies, and ecosystem-based management. Front. Mar. Sci. 6, 580 (2019).

    Google Scholar 

  • 11.

    Mumby, P. J., Steneck, R. S. & Hastings, A. Evidence for and against the existence of alternate attractors on coral reefs. Oikos 122, 481–491 (2013).

    Google Scholar 

  • 12.

    Ateweberhan, M., McClanahan, T. R., Graham, N. A. J. & Sheppard, C. R. C. Episodic heterogeneous decline and recovery of coral cover in the Indian Ocean. Coral Reefs 30, 739–752 (2011).

    Google Scholar 

  • 13.

    Obura, D. et al. (eds) Coral Reef Status Report for the Western Indian Ocean (International Coral Reef Initiative, 2017).

  • 14.

    Bruno, J. F. & Selig, E. R. Regional decline of coral cover in the Indo-Pacific: timing, extent, and subregional comparisons. PLoS ONE 2, e711 (2007).

    Google Scholar 

  • 15.

    Jackson, J., Donovan, M. K., Cramer, K. & Lam, V. (eds) Status and Trends of Caribbean Coral Reefs: 1970–2012 (International Coral Reef Initiative, 2014).

  • 16.

    Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).

    CAS 

    Google Scholar 

  • 17.

    McClanahan, T. R., Ateweberhan, M., Darling, E. S., Graham, N. A. J. & Muthiga, N. A. Biogeography and change among regional coral communities across the Western Indian Ocean. PLoS ONE 9, e93385 (2014).

    Google Scholar 

  • 18.

    Nicholson, E. et al. Scientific foundations for an ecosystem goal, milestones and indicators for the post-2020 global biodiversity framework. Nat. Ecol. Evol. 5, 1338–1349 (2021).

    Google Scholar 

  • 19.

    Keith, D. A. et al. Scientific foundations for an IUCN Red List of Ecosystems. PLoS ONE 8, e62111 (2013).

    CAS 

    Google Scholar 

  • 20.

    Rodriguez, J. P. et al. A practical guide to the application of the IUCN Red List of Ecosystems criteria. Philos. Trans. R. Soc. B 370, 20140003 (2015).

  • 21.

    Alaniz, A. J., Pérez-Quezada, J. F., Galleguillos, M., Vásquez, A. E. & Keith, D. A. Operationalizing the IUCN Red List of Ecosystems in public policy. Conserv. Lett. 12, e12665 (2019).

    Google Scholar 

  • 22.

    van Hooidonk, R. et al. Local-scale projections of coral reef futures and implications of the Paris Agreement. Sci. Rep. https://doi.org/10.1038/srep39666 (2016).

  • 23.

    Hausfather, Z. & Peters, G. P. Emissions—the ‘business as usual’ story is misleading. Nature 577, 618–620 (2020).

    CAS 

    Google Scholar 

  • 24.

    Gudka, M. et al. Participatory reporting of the 2016 bleaching event in the Western Indian Ocean. Coral Reefs 39, 1–11 (2020).

    Google Scholar 

  • 25.

    Diaz, S. et al. Set ambitious goals for biodiversity and sustainability. Science 370, 411–413 (2020).

    Google Scholar 

  • 26.

    Steneck, R. S., Mumby, P. J., MacDonald, C., Rasher, D. B. & Stoyle, G. Attenuating effects of ecosystem management on coral reefs. Sci. Adv. 4, eaao5493 (2018).

    Google Scholar 

  • 27.

    Arnold, S., Steneck, R. & Mumby, P. Running the gauntlet: inhibitory effects of algal turfs on the processes of coral recruitment. Mar. Ecol. Prog. Ser. 414, 91–105 (2010).

    Google Scholar 

  • 28.

    Karkarey, R., Kelkar, N., Lobo, A. S., Alcoverro, T. & Arthur, R. Long-lived groupers require structurally stable reefs in the face of repeated climate change disturbances. Coral Reefs 33, 289–302 (2014).

    Google Scholar 

  • 29.

    Sadovy de Mitcheson, Y. J. et al. Valuable but vulnerable: over-fishing and under-management continue to threaten groupers so what now? Mar. Policy 116, 103909 (2020).

    Google Scholar 

  • 30.

    Garpe, K. C. & Öhman, M. C. Coral and fish distribution patterns in Mafia Island Marine Park, Tanzania: fish–habitat interactions. Hydrobiologia 498, 191–211 (2003).

    Google Scholar 

  • 31.

    Samoilys, M., Roche, R., Koldewey, H. & Turner, J. Patterns in reef fish assemblages: insights from the Chagos Archipelago. PLoS ONE 13, e0191448 (2018).

    Google Scholar 

  • 32.

    Graham, N. A. J. et al. Human disruption of coral reef trophic structure. Curr. Biol. 27, 231–236 (2017).

    CAS 

    Google Scholar 

  • 33.

    Bland, L. M. et al. Using multiple lines of evidence to assess the risk of ecosystem collapse. Proc. R. Soc. B 284, 20170660 (2017).

    Google Scholar 

  • 34.

    Nyström, M. Redundancy and response diversity of functional groups: implications for the resilience of coral reefs. Ambio 35, 30–35 (2006).

    Google Scholar 

  • 35.

    Uribe, E. S., Luna-Acosta, A. & Etter, A. Red List of Ecosystems: risk assessment of coral ecosystems in the Colombian Caribbean. Ocean Coast. Manag. 199, 105416 (2021).

    Google Scholar 

  • 36.

    Burns, E. L. et al. Ecosystem assessment of mountain ash forest in the Central Highlands of Victoria, south-eastern Australia. Austral Ecol. 40, 386–399 (2015).

    Google Scholar 

  • 37.

    Roff, G. & Mumby, P. J. Global disparity in the resilience of coral reefs. Trends Ecol. Evol. 27, 404–413 (2012).

    Google Scholar 

  • 38.

    Boitani, L., Mace, G. M. & Rondinini, C. Challenging the scientific foundations for an IUCN Red List of Ecosystems. Conserv. Lett. 8, 125–131 (2015).

    Google Scholar 

  • 39.

    Rowland, J. A. et al. Ecosystem indices to support global biodiversity conservation. Conserv. Lett. 13, e12680 (2019).

    Google Scholar 

  • 40.

    Bland, L. M. et al. Impacts of the IUCN Red List of Ecosystems on conservation policy and practice. Conserv. Lett. 12, e12666 (2019).

    Google Scholar 

  • 41.

    Brooks, T. M. et al. Harnessing biodiversity and conservation knowledge products to track the Aichi Targets and Sustainable Development Goals. Biodiversity 16, 157–174 (2015).

    Google Scholar 

  • 42.

    Keith, D. A. et al. The IUCN Global Ecosystem Typology v1.0: Descriptive Profiles for Biomes and Ecosystem Functional Groups (Royal Botanic Gardens Kew, 2020).

  • 43.

    Camp, E. F. et al. The future of coral reefs subject to rapid climate change: lessons from natural extreme environments. Front. Mar. Sci. 5, 4 (2018).

    Google Scholar 

  • 44.

    Pendleton, L. et al. Coral reefs and people in a high-CO2 world: where can science make a difference to people? PLoS ONE 11, e0164699 (2016).

    Google Scholar 

  • 45.

    Gamoyo, M., Obura, D. & Reason, C. J. C. Estimating connectivity through larval dispersal in the Western Indian Ocean. J. Geophys. Res. Biogeosci. 124, 2446–2459 (2019).

    Google Scholar 

  • 46.

    Portner, H. O. et al. Scientific Outcome of the IPBES-IPCC Co-Sponsored Workshop Report on Biodiversity and Climate Change (IPBES, 2021); https://zenodo.org/record/5101125

  • 47.

    Global Biodiversity Outlook 5 (Convention on Biological Diversity, 2020); https://www.cbd.int/gbo5

  • 48.

    IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer L. A.) (IPCC, 2014).

  • 49.

    Díaz, S. et al. Set ambitious goals for biodiversity and sustainability. Science 370, 411–413 (2020).

    Google Scholar 

  • 50.

    ICRI, Coral Reefs and the UN (International Coral Reef Initiative, 2021); https://www.icriforum.org/icri-coral-reefs-and-the-un/

  • 51.

    Mahon, R. & Fanning, L. Regional ocean governance: polycentric arrangements and their role in global ocean governance. Mar. Policy 107, 103590 (2019).

    Google Scholar 

  • 52.

    Bland, L. M., Keith, D. A., Miller, R. M., Murray, N. J. & Rodríguez, J. P. Guidelines for the Application of IUCN Red List of Ecosystems Categories and Criteria (IUCN, 2015); https://doi.org/10.2305/IUCN.CH.2016.RLE.1.en

  • 53.

    Spalding, M. D. et al. Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. BioScience 57, 573–583 (2007).

    Google Scholar 

  • 54.

    Veron, J., Stafford-Smith, M. G., Devantier, L. M. & Turak, E. Overview of distribution patterns of zooxanthellate Scleractinia. Front. Mar. Sci. 1, 81 (2015).

  • 55.

    Obura, D. O. The diversity and biogeography of Western Indian Ocean reef-building corals. PLoS ONE 7, e45013 (2012).

    CAS 

    Google Scholar 

  • 56.

    Connell, J. H. Diversity in tropical rain forests and coral reefs. Science 199, 1302–1310 (1978).

    CAS 

    Google Scholar 

  • 57.

    Knowlton, N. Thresholds and multiple stable states in coral reef community dynamics. Integr. Comp. Biol. 32, 674–682 (1992).

    Google Scholar 

  • 58.

    Hughes, T. P., Carpenter, S., Rockström, J., Scheffer, M. & Walker, B. Multiscale regime shifts and planetary boundaries. Trends Ecol. Evol. 28, 389–395 (2013).

    Google Scholar 

  • 59.

    Jouffray, J. B. et al. Identifying multiple coral reef regimes and their drivers across the Hawaiian archipelago. Philos. Trans. R. Soc. B 370, 20130268 (2014).

  • 60.

    Nyström, M. & Folke, C. Spatial resilience of coral reefs. Ecosystems 4, 406–417 (2001).

    Google Scholar 

  • 61.

    Mumby, P. J. Phase shifts and the stability of macroalgal communities on Caribbean coral reefs. Coral Reefs 28, 761–773 (2009).

    Google Scholar 

  • 62.

    Smith, J. E. et al. Re-evaluating the health of coral reef communities: baselines and evidence for human impacts across the central Pacific. Proc. R. Soc. B 283, 20151985 (2016).

    Google Scholar 

  • 63.

    Bellwood, D. R., Hughes, T. P., Folke, C. & Nyström, M. Confronting the coral reef crisis. Nature 429, 827–833 (2004).

    CAS 

    Google Scholar 

  • 64.

    Mumby, P. J., Hastings, A. & Edwards, H. J. Thresholds and the resilience of Caribbean coral reefs. Nature 450, 98–101 (2007).

    CAS 

    Google Scholar 

  • 65.

    Ainsworth, C. H. & Mumby, P. J. Coral–algal phase shifts alter fish communities and reduce fisheries production. Glob. Change Biol. 21, 165–172 (2015).

    Google Scholar 

  • 66.

    Wittebolle, L. et al. Initial community evenness favours functionality under selective stress. Nature 458, 623–626 (2009).

    CAS 

    Google Scholar 

  • 67.

    Stuart-Smith, R. D. et al. Integrating abundance and functional traits reveals new global hotspots of fish diversity. Nature 501, 539–542 (2013).

    CAS 

    Google Scholar 

  • 68.

    Bellwood, D. R. et al. Coral reef conservation in the Anthropocene: confronting spatial mismatches and prioritizing functions. Biol. Conserv. 236, 604–615 (2019).

    Google Scholar 

  • 69.

    Cinner, J. E. et al. Bright spots among the world’s coral reefs. Nature 535, 416–419 (2016).

    CAS 

    Google Scholar 

  • 70.

    Huang, W., Mukherjee, D. & Chen, S. Assessment of Hurricane Ivan impact on chlorophyll-a in Pensacola Bay by MODIS 250m remote sensing. Mar. Pollut. Bull. 62, 490–498 (2011).

    CAS 

    Google Scholar 

  • 71.

    Chen, S. Estimating wide range total suspended solids concentrations from MODIS 250-m imageries: an improved method. ISPRS J. Photogramm. Remote Sens. 99, 58–69 (2015).

    Google Scholar 

  • 72.

    Porter, S. N., Branch, G. M. & Sink, K. J. Changes in shallow-reef community composition along environmental gradients on the East African coast. Mar. Biol. 164, 101 (2017).

    Google Scholar 

  • 73.

    Perry, C. T. & Alvarez-Filip, L. Changing geo‐ecological functions of coral reefs in the Anthropocene. Funct. Ecol. 33, 976–988 (2018).

    Google Scholar 

  • 74.

    Andrefouet, S. et al. Global assessment of modern coral reef extent and diversity for regional science and management applications: a view from space. In Proc. 10th International Coral Reef Symposium 1732–1745 (ICRS, 2006).

  • 75.

    Maina, J., Venus, V., McClanahan, T. R. & Ateweberhan, M. Modelling susceptibility of coral reefs to environmental stress using remote sensing data and GIS models. Ecol. Model. 212, 180–199 (2008).

    Google Scholar 

  • 76.

    Maina, J., McClanahan, T. R., Venus, V., Ateweberhan, M. & Madin, J. Global gradients of coral exposure to environmental stresses and implications for local management. PLoS ONE 6, e23064 (2011).

    CAS 

    Google Scholar 

  • 77.

    Liu, G. et al. NOAA coral reef watch’s decision support system for coral reef management. In Proc. 12th International Coral Reef Symposium (2012); https://www.icrs2012.com/proceedings/manuscripts/ICRS2012_5A_6.pdf

  • 78.

    Hill, J. & Wilkinson, C. Methods for Ecological Monitoring of Coral Reefs: Version 1 (Australian Institute of Marine Science, 2004).

  • 79.

    Wilkinson, C. Status of Coral Reefs of the World: 2008 (International Coral Reef Initiative, 2008).

  • 80.

    Muller-Karger, F. E. et al. Advancing marine biological observations and data requirements of the complementary essential ocean variables (EOVs) and essential biodiversity variables (EBVs) frameworks. Front. Mar. Sci. 5, 15 (2018).

    Google Scholar 

  • 81.

    Bax, N. J. et al. Linking capacity development to GOOS monitoring networks to achieve sustained ocean observation. Front. Mar. Sci. 5, 206 (2018).

    Google Scholar 

  • 82.

    Reuchlin-Hugenholtz, E., Shackell, N. L. & Hutchings, J. A. The potential for spatial distribution indices to signal thresholds in marine fish biomass. PLoS ONE 10, e0120500 (2015).

    Google Scholar 

  • 83.

    Kuempel, C. D., Adams, V. M., possingham, H. P. & Bode, M. Bigger or better: the relative benefits of protected area network expansion and enforcement for the conservation of an exploited species. Conserv. Lett. 11, e12433 (2017).

    Google Scholar 

  • 84.

    Morais, R. A., Connolly, S. R. & Bellwood, D. R. Human exploitation shapes productivity–biomass relationships on coral reefs. Glob. Change Biol. 26, 1295–1305 (2020).

    Google Scholar 

  • 85.

    Harford, W. J., Sagarese, S. R. & Karnauskas, M. Coping with information gaps in stock productivity for rebuilding and achieving maximum sustainable yield for grouper–snapper fisheries. Fish Fish. 20, 303–321 (2019).

    Google Scholar 


  • Source: Ecology - nature.com

    Eco-evolutionary responses of the microbial loop to surface ocean warming and consequences for primary production

    Population genetics and independently replicated evolution of predator-associated burst speed ecophenotypy in mosquitofish