in

Warming and eutrophication interactively drive changes in the methane-oxidizing community of shallow lakes

[adace-ad id="91168"]
  • 1.

    Saunois, M. et al. The global methane budget 2000-2017. Earth Syst. Sci. Data 12, 1561–1623 (2020).

    Article 

    Google Scholar 

  • 2.

    Bastviken, D., Cole, J., Pace, M. & Tranvik, L. Methane emissions from lakes: dependence of lake characteristics, two regional assessments, and a global estimate. Glob. Biogeochem. Cycles 18, 1–12 (2004).

    Article 

    Google Scholar 

  • 3.

    Moss, B. Allied attack: climate change and eutrophication. Inl. Waters 1, 101–105 (2011).

    Article 

    Google Scholar 

  • 4.

    Davidson, T. A. et al. Synergy between nutrients and warming enhances methane ebullition from experimental lakes. Nat. Clim. Chang. 8, 156–160 (2018).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Aben, R. C. H. et al. Cross continental increase in methane ebullition under climate change. Nat. Commun. 8, 1–8 (2017).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Oremland, R. S. & Culbertson, C. W. Importance of methane-oxidizing bacteria in the methane budget as revealed by the use of a specific inhibitor. Nature 356, 421–423 (1992).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Veraart, A. J., Steenbergh, A. K., Ho, A., Kim, S. Y. & Bodelier, P. L. E. Beyond nitrogen: the importance of phosphorus for CH4 oxidation in soils and sediments. Geoderma 259–260, 337–346 (2015).

    Article 

    Google Scholar 

  • 8.

    Hoefman, S. et al. Niche differentiation in nitrogen metabolism among methanotrophs within an operational taxonomic unit. BMC Microbiol. 14, 1–11 (2014).

    Article 

    Google Scholar 

  • 9.

    Shelley, F., Abdullahi, F., Grey, J. & Trimmer, M. Microbial methane cycling in the bed of a chalk river: oxidation has the potential to match methanogenesis enhanced by warming. Freshw. Biol. 60, 150–160 (2015).

    CAS 
    Article 

    Google Scholar 

  • 10.

    Ho, A. et al. Conceptualizing functional traits and ecological characteristics of methane-oxidizing bacteria as life strategies. Environ. Microbiol. Rep. 5, 335–345 (2013).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Semrau, J. D., Dispirito, A. A. & Yoon, S. Methanotrophs and copper. FEMS Microbiol. Rev. 34, 496–531 (2010).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Kaupper, T. et al. When the going gets tough: emergence of a complex methane-driven interaction network during recovery from desiccation-rewetting. Soil Biol. Biochem. 153, 108109 (2021).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Ho, A. & Frenzel, P. Heat stress and methane-oxidizing bacteria: effects on activity and population dynamics. Soil Biol. Biochem. 50, 22–25 (2012).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Liboriussen, L. et al. Global warming: design of a flow-through shallow lake mesocosm climate experiment. Limnol. Oceanogr. Methods 3, 1–9 (2005).

    Article 

    Google Scholar 

  • 15.

    Ghashghavi, M., Jetten, M. S. M. & Lüke, C. Survey of methanotrophic diversity in various ecosystems by degenerate methane monooxygenase gene primers. AMB Express 7, 162 (2017).

    Article 

    Google Scholar 

  • 16.

    Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Lax, S., Abreu, C. I. & Gore, J. Higher temperatures generically favour slower-growing bacterial species in multispecies communities. Nat. Ecol. Evol. 4, 560–567 (2020).

    Article 

    Google Scholar 

  • 19.

    Lipson, D. A. The complex relationship between microbial growth rate and yield and its implications for ecosystem processes. Front. Microbiol. 6, 615 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 20.

    Bodelier, P. L. & Laanbroek, H. J. Nitrogen as a regulatory factor of methane oxidation in soils and sediments. FEMS Microbiol. Ecol. 47, 265–277 (2004).

    CAS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Microbiome diversity and host immune functions influence survivorship of sponge holobionts under future ocean conditions

    Artificial nighttime lighting impacts visual ecology links between flowers, pollinators and predators