in

Water column gradients beneath the summer ice of a High Arctic freshwater lake as indicators of sensitivity to climate change

  • 1.

    Hampton, S. E. et al. Ecology under lake ice. Ecol. Lett. 20, 98–111 (2017).

    Article  Google Scholar 

  • 2.

    Vincent, W. F., Hobbie, J. E. & Laybourn-Parry, J. Introduction to the limnology of high-latitude lake and river ecosystems. In Polar Lakes and Rivers: Limnology of Arctic and Antarctic Aquatic Ecosystems (eds. Vincent, W. F. & Laybourn-Parry, J.) 1–24 (Oxford, Oxford University Press, 2008).

  • 3.

    Paquette, M., Fortier, D., Mueller, D. R., Sarrazin, D. & Vincent, W. F. Rapid disappearance of perennial ice on Canada’s most northern lake. Geophys. Res. Lett. 42, 1433–1440 (2015).

    ADS  Article  Google Scholar 

  • 4.

    Lehnherr, I. et al. The world’s largest High Arctic lake responds rapidly to climate warming. Nat. Commun. 9, 1290. https://doi.org/10.1038/s41467-018-03685-z (2018).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 5.

    Obryk, M. K., Doran, P. T. & Priscu, J. C. Prediction of ice-free conditions for a perennially ice-covered Antarctic lake. J. Geophys. Res. Earth Surf. 124, 686–694 (2019).

    ADS  Article  Google Scholar 

  • 6.

    Vincent, W. F. et al. Extreme ecosystems and geosystems in the Canadian High Arctic: Ward Hunt Island and vicinity. Ecoscience 18, 236–261 (2011).

    Article  Google Scholar 

  • 7.

    Spigel, R. H. & Priscu, J. C. Physical limnology of the McMurdo Dry Valleys lakes. In Ecosystem Dynamics in a Polar Desert: The McMurdo Dry Valleys, Antarctica (ed. Priscu, J. C.) 153–187 (London, American Geophysical Union, 1998).

  • 8.

    Pernica, P., North, R. L. & Baulch, H. M. In the cold light of day: The potential importance of under-ice convective mixed layers to primary producers. Inland Waters 7, 138–150 (2017).

    CAS  Article  Google Scholar 

  • 9.

    Kelly, J. R. & Scheibling, R. E. Fatty acids as dietary tracers in benthic food webs. Mar. Ecol. Prog. Ser. 446, 1–22 (2012).

    ADS  CAS  Article  Google Scholar 

  • 10.

    Taipale, S. et al. Fatty acid composition as biomarkers of freshwater microalgae: analysis of 37 strains of microalgae in 22 genera and in seven classes. Aquat. Microb. Ecol. 71, 165–178 (2013).

    Article  Google Scholar 

  • 11.

    Mohit, V., Culley, A., Lovejoy, C., Bouchard, F. & Vincent, W. F. Hidden biofilms in a far northern lake and implications for the changing Arctic. NPJ Biofilms Microbiomes 3, 17. https://doi.org/10.1038/s41522-017-0024-3 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 12.

    Paquette, M., Fortier, D. & Vincent, W. F. Water tracks in the High Arctic: a hydrological network dominated by rapid subsurface flow through patterned ground. Arct. Sci. 3, 334–353 (2017).

    Article  Google Scholar 

  • 13.

    Vincent, W. F. & Mueller, D. Witnessing ice habitat collapse in the Arctic. Science 370, 1031–1032 (2020).

    ADS  CAS  Article  Google Scholar 

  • 14.

    MacIntyre, S., Cortés, A. & Sadro, S. Sediment respiration drives circulation and production of CO2 in ice-covered Alaskan arctic lakes. Limnol. Oceanogr. Lett. 3, 302–310 (2018).

    CAS  Article  Google Scholar 

  • 15.

    Cortés, A. & MacIntyre, S. Mixing processes in small arctic lakes during spring. Limnol. Oceanogr. 65, 260–288 (2020).

    ADS  Article  Google Scholar 

  • 16.

    Bégin, P. N. et al. The littoral zone of polar lakes: Inshore-offshore contrasts in an ice-covered High Arctic lake. Arct. Sci. 7, 1–24. https://doi.org/10.1139/as-2020-0026 (2021).

    Article  Google Scholar 

  • 17.

    Bégin, P. N. et al. Extreme warming and regime shift toward amplified variability in a far northern lake. Limnol. Oceanogr. 65, 1–23. https://doi.org/10.1002/lno.11546 (2020).

    Article  Google Scholar 

  • 18.

    Spaulding, S. A., MCKnight, D. M., Smith, R. L. & Dufford, R. Phytoplankton population dynamics in perennially ice-covered Lake Fryxell, Antarctica. J. Plankton Res. 16, 527–541 (1994).

  • 19.

    Charvet, S., Vincent, W. F. & Lovejoy, C. Chrysophytes and other protists in High Arctic lakes: molecular gene surveys, pigment signatures and microscopy. Polar Biol. 35, 733–748 (2012).

    Article  Google Scholar 

  • 20.

    Jones, R. I. Mixotrophy in planktonic protists: an overview. Freshw. Biol. 45, 219–226 (2000).

    Article  Google Scholar 

  • 21.

    Bonilla, S., Villeneuve, V. & Vincent, W. F. Benthic and planktonic algal communities in a High Arctic lake: pigment structure and contrasting responses to nutrient enrichment. J. Phycol. 41, 1120–1130 (2005).

    CAS  Article  Google Scholar 

  • 22.

    Quesada, A., Fernández-Valiente, E., Hawes, I. & Howard-Williams, C. Benthic primary production in polar lakes and rivers. In Polar Lakes and Rivers: Limnology of Arctic and Antarctic Aquatic Ecosystems (eds. Vincent, W. F. & Laybourn-Parry, J.) 179–196 (Oxford University Press, Oxford, 2008).

    Google Scholar 

  • 23.

    Rautio, M. et al. Shallow freshwater ecosystems of the circumpolar Arctic. Ecoscience 18, 204–222 (2011).

    Article  Google Scholar 

  • 24.

    Markager, S. & Vincent, W. F. Light absorption by phytoplankton: development of a matching parameter for algal photosynthesis under different spectral regimes. J. Plankton Res. 23, 1373–1384 (2001).

    Article  Google Scholar 

  • 25.

    Duarte, C. M. & Prairie, Y. T. Prevalence of heterotrophy and atmospheric CO2 emissions from aquatic ecosystems. Ecosystems 8, 862–870 (2005).

    CAS  Article  Google Scholar 

  • 26.

    Denfeld, B. A., Baulch, H. M., del Giorgio, P. A., Hampton, S. E. & Karlsson, J. A synthesis of carbon dioxide and methane dynamics during the ice-covered period of northern lakes: Under-ice CO 2 and CH 4 dynamics. Limnol. Oceanogr. Lett. 3, 117–131 (2018).

    CAS  Article  Google Scholar 

  • 27.

    Kling, G. W., Kipphut, G. W. & Miller, M. C. Arctic lakes and streams as gas conduits to the atmosphere: implications for tundra carbon budgets. Science 251, 298–301 (1991).

    ADS  CAS  Article  Google Scholar 

  • 28.

    Matveev, A., Laurion, I. & Vincent, W. F. Winter accumulation of methane and its variable timing of release from thermokarst lakes in subarctic peatlands. J. Geophys. Res. Biogeosci. 124, 3521–3535 (2019).

    CAS  Article  Google Scholar 

  • 29.

    Paquette, M., Fortier, D., Lafrenière, M. & Vincent, W. F. Periglacial slopewash dominated by solute transfers and subsurface erosion on a High Arctic slope. Permafr. Periglac. Process. 31, 472–486 (2020).

    Article  Google Scholar 

  • 30.

    Negandhi, K. et al. Small thaw ponds: an unaccounted source of methane in the Canadian High Arctic. PLoS ONE 8, e78204. https://doi.org/10.1371/journal.pone.0078204 (2013).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 31.

    Lyons, W. B. & Finlay, J. Biogeochemical processes in high-latitude lakes and rivers. In Polar Lakes and Rivers: Limnology of Arctic and Antarctic Aquatic Ecosystems (eds. Vincent, W. F. & Laybourn-Parry, J.) 137–156 (Oxford University Press, Oxford, 2008).

    Google Scholar 

  • 32.

    Watanabe, S., Laurion, I., Chokmani, K., Pienitz, R. & Vincent, W. F. Optical diversity of thaw ponds in discontinuous permafrost: a model system for water color analysis. J. Geophys. Res. Biogeosci. 116, G02003. https://doi.org/10.1029/2010jg001380 (2011).

    ADS  Article  Google Scholar 

  • 33.

    Retamal, L., Vincent, W. F., Martineau, C. & Osburn, C. L. Comparison of the optical properties of dissolved organic matter in two river-influenced coastal regions of the Canadian Arctic. Estuar. Coast. Shelf Sci. 72, 261–272 (2007).

    ADS  Article  Google Scholar 

  • 34.

    Wauthy, M. et al. Increasing dominance of terrigenous organic matter in circumpolar freshwaters due to permafrost thaw. Limnol. Oceanogr. Lett. 3, 186–198 (2018).

    CAS  Article  Google Scholar 

  • 35.

    Murphy, K. R., Stedmon, C. A., Waite, T. D. & Ruiz, G. M. Distinguishing between terrestrial and autochthonous organic matter sources in marine environments using fluorescence spectroscopy. Mar. Chem. 108, 40–58 (2008).

    CAS  Article  Google Scholar 

  • 36.

    Jakkila, J., Leppäranta, M., Kawamura, T., Shirasawa, K. & Salonen, K. Radiation transfer and heat budget during the ice season in Lake Pääjärvi Finland. Aquat. Ecol. 43, 681–692 (2009).

    Google Scholar 

  • 37.

    CEN. Climate station data from Northern Ellesmere Island in Nunavut, Canada, v. 1.7 (2002–2019). Nordicana D1. https://doi.org/10.5885/44985SL-8F203FD3ACCD4138 (2020).

  • 38.

    Pawlowicz, R. Calculating the conductivity of natural waters. Limnol. Oceanogr. Methods 6, 489–501 (2008).

    CAS  Article  Google Scholar 

  • 39.

    Prėskienis, V. et al. Seasonal patterns in greenhouse gas emissions from lakes and ponds in a High Arctic polygonal landscape. Limnol. Oceanogr. https://doi.org/10.1002/lno.11660 (2021).

    Article  Google Scholar 

  • 40.

    Yamamoto, S., Alcauskas, J. B. & Crozier, T. E. Solubility of methane in distilled water and seawater. J. Chem. Eng. Data 21, 78–80 (1976).

    CAS  Article  Google Scholar 

  • 41.

    Helms, J. R. et al. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnol. Oceanogr. 53, 955–969 (2008).

    ADS  Article  Google Scholar 

  • 42.

    Weishaar, J. L. et al. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ. Sci. Technol. 37, 4702–4708 (2003).

    ADS  CAS  Article  Google Scholar 

  • 43.

    Loiselle, S. A. et al. Variability in photobleaching yields and their related impacts on optical conditions in subtropical lakes. J. Photochem. Photobiol. Biol. 95, 129–137 (2009).

    CAS  Article  Google Scholar 

  • 44.

    McKnight, D. M. et al. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnol. Oceanogr. 46, 38–48 (2001).

    ADS  CAS  Article  Google Scholar 

  • 45.

    Murphy, K. R., Stedmon, C. A., Graeber, D. & Bro, R. Fluorescence spectroscopy and multi-way techniques PARAFAC. Anal. Methods 5, 6557–6566 (2013).

    Google Scholar 

  • 46.

    Murphy, K. R. et al. Measurement of dissolved organic matter fluorescence in aquatic environments: an interlaboratory comparison. Environ. Sci. Technol. 44, 9405–9412 (2010).

    ADS  CAS  Article  Google Scholar 

  • 47.

    Borcard, D., Gillet, F. & Legendre, P. Numerical Ecology with R (Springer, Berlin, 2011).

    Google Scholar 

  • 48.

    IOCCG Protocol Series. Inherent optical property measurements and protocols: absorption coefficient. In Ocean Optics and Biogeochemistry Protocols for Satellite Ocean Colour Sensor Validation (eds. Neeley, A. R. & Mannino, A.) vol. 1.0. https://doi.org/10.25607/OBP-119 (2018).

  • 49.

    Roy, S. Phytoplankton Pigments: Characterization, Chemotaxonomy and Applications in Oceanography (Cambridge University Press, Cambridge, 2011).

    Google Scholar 

  • 50.

    Glew, J. R. Miniature gravity corer for recovering short sediment cores. J. Paleolimnol. 5, 285–287 (1991).

    ADS  Article  Google Scholar 

  • 51.

    Schneider, T., Grosbois, G., Vincent, W. F. & Rautio, M. Saving for the future: Pre-winter uptake of algal lipids supports copepod egg production in spring. Freshw. Biol. 62, 1063–1072 (2017).

    CAS  Article  Google Scholar 

  • 52.

    Grosbois, G., Mariash, H., Schneider, T. & Rautio, M. Under-ice availability of phytoplankton lipids is key to freshwater zooplankton winter survival. Sci. Rep. 7, 11543. https://doi.org/10.1038/s41598-017-10956-0 (2017).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 


  • Source: Ecology - nature.com

    Genomic evidence of prevalent hybridization throughout the evolutionary history of the fig-wasp pollination mutualism

    Scientists as engaged citizens