Leibold, M. A. et al. The metacommunity concept: a framework for multi-scale community ecology. Ecol. Lett. 7, 601–613. https://doi.org/10.1111/j.1461-0248.2004.00608.x (2004).
Google Scholar
McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185. https://doi.org/10.1016/j.tree.2006.02.002 (2006).
Google Scholar
Kraft, N. et al. Community assembly, coexistence, and the environmental filtering metaphor. Funct. Ecol. https://doi.org/10.1111/1365-2435.12345 (2014).
Google Scholar
de la Sancha, N. U., Higgins, C. L., Presley, S. J. & Strauss, R. E. Metacommunity structure in a highly fragmented forest: has deforestation in the Atlantic Forest altered historic biogeographic patterns?. Divers. Distrib. 20, 1058–1070. https://doi.org/10.1111/ddi.12210 (2014).
Google Scholar
Leibold, M. & Mikkelson, G. Coherence, species turnover, and boundary clumping: Elements of meta-community structure. Oikos 97, 237–250. https://doi.org/10.1034/j.1600-0706.2002.970210.x (2002).
Google Scholar
Presley, S., Higgins, C. & Willig, M. A comprehensive framework for the evaluation of metacommunity structure. Oikos 119, 908–917. https://doi.org/10.1111/j.1600-0706.2010.18544.x (2010).
Google Scholar
Dallas, T. & Drake, J. M. Relative importance of environmental, geographic, and spatial variables on zooplankton metacommunities. Ecosphere 5, 1–13. https://doi.org/10.1890/ES14-00071.1 (2014).
Google Scholar
Heino, J., Mykrä, H. & Muotka, T. Temporal variability of nestedness and idiosyncratic species in stream insect assemblages. Divers. Distrib. 15, 198–206. https://doi.org/10.1111/j.1472-4642.2008.00513.x (2009).
Google Scholar
Henriques-Silva, R., Lindo, Z. & Peres-Neto, P. R. A community of metacommunities: exploring patterns in species distributions across large geographical areas. Ecology 94, 627–639. https://doi.org/10.1890/12-0683.1 (2013).
Google Scholar
Dallas, T. & Drake, J. M. Relative importance of environmental, geographic, and spatial variables on zooplankton metacommunities. Ecosphere 5, art104. https://doi.org/10.1890/ES14-00071.1 (2014).
Google Scholar
Erős, T. et al. Quantifying temporal variability in the metacommunity structure of stream fishes: The influence of non-native species and environmental drivers. Hydrobiologia 722, 31–43. https://doi.org/10.1007/s10750-013-1673-8 (2014).
Google Scholar
Fernandes, I. M., Henriques-Silva, R., Penha, J., Zuanon, J. & Peres-Neto, P. R. Spatiotemporal dynamics in a seasonal metacommunity structure is predictable: The case of floodplain-fish communities. Ecography 37, 464–475. https://doi.org/10.1111/j.1600-0587.2013.00527.x (2014).
Google Scholar
Tonkin, J. D. et al. The role of dispersal in river network metacommunities: Patterns, processes, and pathways. Freshw. Biol. 63, 141–163. https://doi.org/10.1111/fwb.13037 (2018).
Google Scholar
Kim, S., Chung, S., Park, H., Cho, Y. & Lee, H. Analysis of environmental factors associated with cyanobacterial dominance after river weir installation. Water https://doi.org/10.3390/w11061163 (2019).
Google Scholar
Deng, J. et al. Effects of nutrients, temperature and their interactions on spring phytoplankton community succession in Lake Taihu, China. PLoS ONE 9, e113960–e113960. https://doi.org/10.1371/journal.pone.0113960 (2014).
Google Scholar
Yang, J., Jiang, H., Liu, W. & Wang, B. Benthic algal community structures and their response to geographic distance and environmental variables in the Qinghai-Tibetan lakes with different salinity. Front. Microbiol. 9, 578–578. https://doi.org/10.3389/fmicb.2018.00578 (2018).
Google Scholar
Zhou, J. et al. Microbial community structure and associations during a marine dinoflagellate bloom. Front. Microbiol. 9, 1201. https://doi.org/10.3389/fmicb.2018.01201 (2018).
Google Scholar
RDevelopmentCoreTeam. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2013).
Baird, R. B. Standard Methods for the Examination of Water and Wastewater 23rd edn. (Water Environment Federation, American Public Health Association, 2017).
Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).
Cajo, J. F. T. B. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67, 1167–1179. https://doi.org/10.2307/1938672 (1986).
Google Scholar
Tuomisto, H. A diversity of beta diversities: straightening up a concept gone awry. Part 2. Quantifying beta diversity and related phenomena. Ecography 33, 23–45. https://doi.org/10.1111/j.1600-0587.2009.06148.x (2010).
Google Scholar
Clements, F. E. Nature and structure of the climax. J. Ecol. 24, 252–284. https://doi.org/10.2307/2256278 (1936).
Google Scholar
Kurthen, A. L. et al. Metacommunity structures of macroinvertebrates and diatoms in high mountain streams, Yunnan, China. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2020.571887 (2020).
Google Scholar
Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R. & Cushing, C. E. The river continuum concept. Can. J. Fish. Aquat. Sci. 37, 130–137. https://doi.org/10.1139/f80-017 (1980).
Google Scholar
López-González, C., Presley, S. J., Lozano, A., Stevens, R. D. & Higgins, C. L. Metacommunity analysis of Mexican bats: environmentally mediated structure in an area of high geographic and environmental complexity. J. Biogeogr. 39, 177–192. https://doi.org/10.1111/j.1365-2699.2011.02590.x (2012).
Google Scholar
Heino, J., Soininen, J., Alahuhta, J., Lappalainen, J. & Virtanen, R. Metacommunity ecology meets biogeography: effects of geographical region, spatial dynamics and environmental filtering on community structure in aquatic organisms. Oecologia 183, 121–137. https://doi.org/10.1007/s00442-016-3750-y (2017).
Google Scholar
Heino, J. & Alahuhta, J. Elements of regional beetle faunas: faunal variation and compositional breakpoints along climate, land cover and geographical gradients. J. Anim. Ecol. 84, 427–441. https://doi.org/10.1111/1365-2656.12287 (2015).
Google Scholar
Mallin, M. A., McIver, M. R., Ensign, S. H. & Cahoon, L. B. Photosynthetic and heterotrophic impacts of nutrient loading to blackwater streams. Ecol. Appl. 14, 823–838. https://doi.org/10.1890/02-5217 (2004).
Google Scholar
B-Béres, V. et al. Autumn drought drives functional diversity of benthic diatom assemblages of continental intermittent streams. Adv. Water Resour. 126, 129–136. https://doi.org/10.1016/j.advwatres.2019.02.010 (2019).
Google Scholar
Kagalou, I., Petridis, D. & Tsimarakis, G. Seasonal variation of water quality parameters and plankton in a shallow Greek lake. J. Freshw. Ecol. 18, 199–206. https://doi.org/10.1080/02705060.2003.9664485 (2003).
Google Scholar
Padisák, J., Crossetti, L. O. & Naselli-Flores, L. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621, 1–19. https://doi.org/10.1007/s10750-008-9645-0 (2009).
Google Scholar
Schabhüttl, S. et al. Temperature and species richness effects in phytoplankton communities. Oecologia 171, 527–536. https://doi.org/10.1007/s00442-012-2419-4 (2013).
Google Scholar
Chen, S. et al. Geographical patterns of algal communities associated with different urban lakes in China. Int. J. Environ. Res. Public Health 17, 1009. https://doi.org/10.3390/ijerph17031009 (2020).
Google Scholar
Hwang, S.-J., Kim, H.-S., Shin, J.-K., Oh, J.-M. & Kong, D.-S. Grazing effects of a freshwater bivalve (Corbicula leana Prime) and large zooplankton on phytoplankton communities in two Korean lakes. Hydrobiologia 515, 161–179. https://doi.org/10.1023/B:HYDR.0000027327.06471.1e (2004).
Google Scholar
Moss, B. et al. How important is climate? Effects of warming, nutrient addition and fish on phytoplankton in shallow lake microcosms. J. Appl. Ecol. 40, 782–792. https://doi.org/10.1046/j.1365-2664.2003.00839.x (2003).
Google Scholar
Chen, S. et al. Local habitat heterogeneity determines the differences in benthic diatom metacommunities between different urban river types. Sci. Total Environ. 669, 711–720. https://doi.org/10.1016/j.scitotenv.2019.03.030 (2019).
Google Scholar
Source: Ecology - nature.com