in

Water sources aggregate parasites with increasing effects in more arid conditions

  • 1.

    Huang, J., Yu, H., Guan, X., Wang, G. & Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Chang. 6, 166–171 (2016).

    ADS 

    Google Scholar 

  • 2.

    Oki, T. & Kanae, S. Global hydrological cycles and world water resources. Science 313, 1068–1072 (2006).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 3.

    Nunn, C. L., Thrall, P. H., Leendertz, F. H. & Boesch, C. The spread of fecally transmitted parasites in socially-structured populations. PLoS ONE 6, e21677 (2011).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 4.

    Vicente, J., Fernández De Mera, I. G. & Gortazar, C. Epidemiology and risk factors analysis of elaphostrongylosis in red deer (Cervus elaphus) from Spain. Parasitol. Res. 98, 77–85 (2006).

    PubMed 

    Google Scholar 

  • 5.

    Paull, S. H. et al. From superspreaders to disease hotspots: linking transmission across hosts and space. Front. Ecol. Environ. 10, 75–82 (2012).

    PubMed 

    Google Scholar 

  • 6.

    Leach, C. B., Webb, C. T. & Cross P. C. When environmentally persistent pathogens transform good habitat into ecological traps. R. Soc. Open Sci. 3, 160051 (2016).

  • 7.

    Dougherty, E. R., Seidel, D. P., Carlson, C. J., Spiegel, O. & Getz, W. M. Going through the motions: incorporating movement analyses into disease research. Ecol. Lett. 21, 588–604 (2018).

    PubMed 

    Google Scholar 

  • 8.

    Valeix, M., Fritz, H., Chamaillé-Jammes, S., Bourgarel, M. & Murindagomo, F. Fluctuations in abundance of large herbivore populations: insights into the influence of dry season rainfall and elephant numbers from long-term data. Anim. Conserv. 11, 391–400 (2008).

    Google Scholar 

  • 9.

    Western, D. Water availability and its influence on the structure and dynamics of a savannah large mammal community. Afr. J. Ecol. 13, 265–286 (1975).

    Google Scholar 

  • 10.

    Sutherland, K., Ndlovu, M. & Pérez-Rodríguez, A. Use of artificial waterholes by animals in the Southern Region of the Kruger National Park, South Africa. Afr. J. Wildl. Res. 48, 023003 (2018).

    Google Scholar 

  • 11.

    Chamaillé-Jammes, S., Fritz, H., Valeix, M., Murindagomo, F. & Clobert, J. Resource variability, aggregation and direct density dependence in an open context: the local regulation of an African elephant population. J. Anim. Ecol. 77, 135–144 (2008).

    PubMed 

    Google Scholar 

  • 12.

    Vanderwaal, K., Gilbertson, M., Okanga, S., Allan, B. F. & Craft, M. E. Seasonality and pathogen transmission in pastoral cattle contact networks. R. Soc. Open Sci. 4, 170808 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Hayward, M. W. & Hayward, M. D. Waterhole use by African fauna. South Afr. J. Wildl. Res. 42, 117–127 (2012).

    Google Scholar 

  • 14.

    Valeix, M., Fritz, H., Matsika, R., Matsvimbo, F. & Madzikanda, H. The role of water abundance, thermoregulation, perceived predation risk and interference competition in water access by African herbivores. Afr. J. Ecol. 46, 402–410 (2008).

    Google Scholar 

  • 15.

    Crosmary, W.-G., Valeix, M., Fritz, H., Madzikanda, H. & Côté, S. D. African ungulates and their drinking problems: hunting and predation risks constrain access to water. Anim. Behav. 83, 145–153 (2012).

    Google Scholar 

  • 16.

    Payne, A., Philipon, S., Hars, J., Dufour, B. & Gilot-Fromont, E. Wildlife interactions on baited places and waterholes in a French area infected by bovine tuberculosis. Front. Vet. Sci. 3, 16 (2017).

    Google Scholar 

  • 17.

    Wright, A. N. & Gompper, M. E. Altered parasite assemblages in raccoons in response to manipulated resource availability. Oecologia 144, 148–156 (2005).

    PubMed 
    ADS 

    Google Scholar 

  • 18.

    Morgan, E. R., Milner-Gulland, E. J., Torgerson, P. R. & Medley, G. F. Ruminating on complexity: macroparasites of wildlife and livestock. Trends Ecol. Evol. 19, 181–188 (2004).

    PubMed 

    Google Scholar 

  • 19.

    Anderson, R. M. & May, R. M. Regulation and stability of host-parasite population interactions: I. regulatory processes. J. Anim. Ecol. 47, 219–247 (1978).

    Google Scholar 

  • 20.

    Hudson, P. J., Dobson, A. P. & Lafferty, K. D. Is a healthy ecosystem one that is rich in parasites? Trends Ecol. Evol. 21, 381–385 (2006).

    PubMed 

    Google Scholar 

  • 21.

    Charlier, J., van der Voort, M., Kenyon, F., Skuce, P. & Vercruysse, J. Chasing helminths and their economic impact on farmed ruminants. Trends Parasitol. 30, 361–367 (2014).

    PubMed 

    Google Scholar 

  • 22.

    Kaplan, R. M. & Vidyashankar, A. N. An inconvenient truth: Global worming and anthelmintic resistance. Vet. Parasitol. 186, 70–78 (2012).

    PubMed 

    Google Scholar 

  • 23.

    WHO Expert Committee. Prevention and control of schistosomiasis and soil-transmitted helminthiasis. World Heal. Organ Tech. Rep. Ser. 912, 1–57 (2002).

    Google Scholar 

  • 24.

    Ezenwa, V. O. Interactions among host diet, nutritional status and gastrointestinal parasite infection in wild bovids. Int. J. Parasitol. 34, 535–542 (2004).

    PubMed 

    Google Scholar 

  • 25.

    Froy, H. et al. Senescence in immunity against helminth parasites predicts adult mortality in a wild mammal. Science 365, 1296–1298 (2019).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 26.

    Brearley, G. et al. Wildlife disease prevalence in human-modified landscapes. Biol. Rev. 88, 427–442 (2013).

    PubMed 

    Google Scholar 

  • 27.

    Bradley, C. A. & Altizer, S. Urbanization and the ecology of wildlife diseases. Trends Ecol. Evol. 22, 95–102 (2007).

    PubMed 

    Google Scholar 

  • 28.

    Mignatti, A., Boag, B. & Cattadori, I. M. Host immunity shapes the impact of climate changes on the dynamics of parasite infections. Proc. Natl Acad. Sci. USA 113, 2970–2975 (2016).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 29.

    Anderson, R. C. Nematode Parasites of Vertebrates: Their Development and Transmission, Second Edi (CABI Publishing, 2000).

  • 30.

    Stromberg, B. E. Environmental Factors Influencing Transmission in Veterinary Parasitology 247–264 (Elsevier, 1997).

  • 31.

    Knapp-Lawitzke, F., Küchenmeister, F., Küchenmeister, K., von Samson-Himmelstjerna, G. & Demeler, J. Assessment of the impact of plant species composition and drought stress on survival of strongylid third-stage larvae in a greenhouse experiment. Parasitol. Res. 113, 4123–4131 (2014).

    PubMed 

    Google Scholar 

  • 32.

    Nunn, C. L., Thrall, P. H. & Kappeler, P. M. Shared resources and disease dynamics in spatially structured populations. Ecol. Modell. 272, 198–207 (2014).

    Google Scholar 

  • 33.

    Ogada, D. L., Torchin, M. E., Kinnaird, M. F. & Ezenwa, V. O. Effects of vulture declines on facultative scavengers and potential implications for mammalian disease transmission. Conserv. Biol. 26, 453–460 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 34.

    Round, M. C. Check List of the Helminth Parasites of African Mammals of the Orders Carnivora, Tubulidentata, Proboscidea, Hyra-coidea, Artiodactyla and Perissodactyla (Farnham Royal, Commonwealth Agricultural Bureaux, 1968).

  • 35.

    Wells, K. et al. Global spread of helminth parasites at the human–domestic animal–wildlife interface. Glob. Chang. Biol. 24, 3254–3265 (2018).

    PubMed 
    ADS 

    Google Scholar 

  • 36.

    VanderWaal, K., Omondi, G. P. & Obanda, V. Mixed-host aggregations and helminth parasite sharing in an East African wildlife-livestock system. Vet. Parasitol. 205, 224–232 (2014).

    PubMed 

    Google Scholar 

  • 37.

    Walker, J. G., Plein, M., Morgan, E. R. & Vesk, P. A. Uncertain links in host-parasite networks: lessons for parasite transmission in a multi-host system. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 372, 20160095 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Bull, J. J. Virulence. Evolution 48, 1423–1437 (1994).

    CAS 
    PubMed 

    Google Scholar 

  • 39.

    R. W. Ashford, W. Crewe, Parasites of Homo sapiens: An Annotated Checklist of the Protozoa, Helminths, and Arthropods for which We Are Home, 2nd edn (Taylor & Francis, 2003).

  • 40.

    Loarie, S. R., Van Aarde, R. J. & Pimm, S. L. Fences and artificial water affect African savannah elephant movement patterns. Biol. Conserv. 142, 3086–3098 (2009).

    Google Scholar 

  • 41.

    Kay, R. N. B. Responses of African livestock and wild herbivores to drought. J. Arid Environ. 37, 683–694 (1997).

    ADS 

    Google Scholar 

  • 42.

    Chamaillé-Jammes, S., Mtare, G., Makuwe, E. & Fritz, H. African elephants adjust speed in response to surface-water constraint on foraging during the dry-season. PLoS ONE 8, e59164 (2013).

  • 43.

    Redfern, J. V., Grant, R., Biggs, H. & Getz, W. M. Surface-water constraints on herbivore foraging in the Kruger National Park, South Africa. Ecology 84, 2092–2107 (2003).

    Google Scholar 

  • 44.

    Titcomb, G. C., Amooni, G., Mantas, J. N. & Young, H. S. The effects of herbivore aggregations at water sources on savanna plants differ across soil and climate gradients. Ecol. Appl. 31, e02422 (2021).

    PubMed 

    Google Scholar 

  • 45.

    Smit, I. P. J., Grant, C. C. & Devereux, B. J. Do artificial waterholes influence the way herbivores use the landscape? Herbivore distribution patterns around rivers and artificial surface water sources in a large African savanna park. Biol. Conserv. 136, 85–99 (2007).

    Google Scholar 

  • 46.

    Estes, R. D. The Behavior Guide to African Mammals 1st edn (University of California Press, 2012).

  • 47.

    Ezenwa, V. O. Selective defecation and selective foraging: antiparasite behavior in wild ungulates? Ethology 110, 851–862 (2004).

    Google Scholar 

  • 48.

    Valeix, M. et al. How key habitat features influence large terrestrial carnivore movements: Waterholes and African lions in a semi-arid savanna of north-western Zimbabwe. Landsc. Ecol. 25, 337–351 (2010).

    Google Scholar 

  • 49.

    Sinclair, A. R. E., Mduma, S. & Brashares, J. S. Patterns of predation in a diverse predator–prey system. Nature 425, 288–290 (2003).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 50.

    Ford, A. T. et al. Large carnivores make savanna tree communities less thorny. Science 346, 346–349 (2014).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 51.

    Thrash, I. & Derry, J. F. Review of literature on the nature and modelling of piospheres. Koedoe 42, 73–94 (1999).

    Google Scholar 

  • 52.

    Rohr, J. R. et al. Frontiers in climate change-disease research. Trends Ecol. Evol. 26, 270–277 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 53.

    Ogutu, J. O. et al. Extreme wildlife declines and concurrent increase in livestock numbers in Kenya: what are the causes? PLoS ONE 11, e0163249 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    Adhikari, U., Nejadhashemi, A. & Matthew, R. A review of climate change impacts on water resources in east. Afr. Trans. Am. Soc. Agric. Biol. Eng. 58, 1493–1507 (2015).

    Google Scholar 

  • 55.

    Funk, C. et al. Warming of the Indian Ocean threatens eastern and southern African food security but could be mitigated by agricultural development. Proc. Natl Acad. Sci. USA 105, 11081–11086 (2008).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 56.

    IPCC. In Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Pachauri, R., Meyer, L.) (IPCC, 2014).

  • 57.

    de Wit, M. & Stankiewicz, J. Changes in surface water supply across africa with predicted climate change. Science 311, 1917–1921 (2006).

    PubMed 
    ADS 

    Google Scholar 

  • 58.

    Obanda, V., Iwaki, T., Mutinda, N. M. & Gakuya, F. Gastrointestinal parasites and associated pathological lesions in starving free-ranging african elephants. South Afr. J. Wildl. Res. 41, 167–172 (2011).

    Google Scholar 

  • 59.

    Hawkins, J. A. Economic benefits of parasite control in cattle. Vet. Parasitol. 46, 159–173 (1993).

    CAS 
    PubMed 

    Google Scholar 

  • 60.

    Weinstein, S. B., Buck, J. C. & Young, H. S. A landscape of disgust. Science 359, 1213–1214 (2018).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 61.

    Buck, J. C., Weinstein, S. B. & Young, H. S. Ecological and evolutionary consequences of parasite avoidance. Trends Ecol. Evol. 33, 619–632 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 62.

    Ndlovu, M. et al. Water for African elephants (Loxodonta africana): faecal microbial loads affect use of artificial waterholes. Biol. Lett. 14, 20180360 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 63.

    Amoroso, C. R., Kappeler, P. M., Fichtel, C. & Nunn, C. L. Fecal contamination, parasite risk, and waterhole use by wild animals in a dry deciduous forest. Behav. Ecol. Sociobiol. 73, 1–11 (2019).

    Google Scholar 

  • 64.

    Thurber, M. I. et al. Effects of rainfall, host demography, and musth on strongyle fecal egg counts in African elephants (Loxodonta Africana) in Namibia. J. Wildl. Dis. 47, 172–181 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 65.

    Cizauskas, C. A., Turner, W. C., Pitts, N. & Getz, W. M. Seasonal patterns of hormones, macroparasites, and microparasites in wild African ungulates: the interplay among stress, reproduction, and disease. PLoS ONE 10, e0120800 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 66.

    Pelletier, N. & Tyedmers, P. Forecasting potential global environmental costs of livestock production 2000-2050. Proc. Natl Acad. Sci. USA 107, 18371–18374 (2010).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 67.

    Shorrocks, B. The Biology of African Savannahs (Oxford University Press Inc., 2007).

  • 68.

    Barda, B. D. et al. Mini-FLOTAC, an innovative direct diagnostic technique for intestinal parasitic infections: experience from the field. PLoS Negl. Trop. Dis. 7, e2344 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 69.

    Azian, M. Y. et al. Detection of helminth infections in dogs and soil contamination in rural and urban areas. Southeast Asian J. Trop. Med. Public Health 39, 205–212 (2008).

    PubMed 

    Google Scholar 

  • 70.

    Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models (2020).

  • 71.

    Anderson, R. M. & May, R. M. Infectious Disease of Humans: Dynamics and Control (Oxford University Press, 1991).

  • 72.

    Franz, T. E., Caylor, K. K., Nordbotten, J. M., Rodríguez-Iturbe, I. & Celia, M. A. An ecohydrological approach to predicting regional woody species distribution patterns in dryland ecosystems. Adv. Water Resour. 33, 215–230 (2010).

    ADS 

    Google Scholar 

  • 73.

    K. K. Caylor, J. Gitonga, D. J. Martins, Mpala Research Centre Meterorological and Hydrological Dataset (2017).

  • 74.

    R Core Team. R: A Language and Environment for Statistical Computing (2016).

  • 75.

    Titcomb, G. Herbivore dung and parasite counts, Ol Pejeta Conservancy and Mpala Research Centre, Kenya (2015–2018). Environ. Data Initiat. https://doi.org/10.6073/pasta/2728d61f10b767814b5d95fbd69137fa (2021).


  • Source: Ecology - nature.com

    3 Questions: Tolga Durak on building a safety culture at MIT

    Eco-evolutionary responses of the microbial loop to surface ocean warming and consequences for primary production