in

Wetland hydroperiod predicts community structure, but not the magnitude of cross-community congruence

  • 1.

    Vellend, M. The Theory of Ecological Communities (MPB-57). The Theory of Ecological Communities (Princeton University Press, Princeton, 2016). https://doi.org/10.1515/9781400883790.

  • 2.

    Kraft, N. J. B. et al. Community assembly, coexistence and the environmental filtering metaphor. Funct. Ecol. 29, 592–599 (2015).

    Article  Google Scholar 

  • 3.

    Pearson, D. E., Ortega, Y. K., Eren, Ö. & Hierro, J. L. Community assembly theory as a framework for biological invasions. Trends Ecol. Evol. 33, 313–325 (2018).

    PubMed  Article  Google Scholar 

  • 4.

    Cadotte, M. W. & Tucker, C. M. Should environmental filtering be abandoned?. Trends Ecol. Evol. 32, 429–437 (2017).

    PubMed  Article  Google Scholar 

  • 5.

    Duan, M. et al. Disentangling effects of abiotic factors and biotic interactions on cross-taxon congruence in species turnover patterns of plants, moths and beetles. Sci. Rep. 6, 23511 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 6.

    Uboni, C. et al. Exploring cross-taxon congruence between carabid beetles (Coleoptera: Carabidae) and vascular plants in sites invaded by Ailanthus altissima versus non-invaded sites: The explicative power of biotic and abiotic factors. Ecol. Indic. 103, 145–155 (2019).

    Article  Google Scholar 

  • 7.

    Robertson, M. & Avilés, L. Rain, predators and vegetation lushness may structure web-building spider communities along precipitation gradients. Ecol. Entomol. 44, 217–226 (2019).

    Article  Google Scholar 

  • 8.

    Vleminckx, J. et al. Coordinated community structure among trees, fungi and invertebrate groups in Amazonian rainforests. Sci. Rep. 9, 11337 (2019).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 9.

    Maestre, F. T. et al. Do biotic interactions modulate ecosystem functioning along stress gradients? Insights from semi-arid plant and biological soil crust communities. Philos. Trans. R. Soc. B 365, 2057–2070 (2010).

    Article  Google Scholar 

  • 10.

    He, Q., Bertness, M. D. & Altieri, A. H. Global shifts towards positive species interactions with increasing environmental stress. Ecol. Lett. 16, 695–706 (2013).

    PubMed  Article  Google Scholar 

  • 11.

    Scherrer, D. et al. Disentangling the processes driving plant assemblages in mountain grasslands across spatial scales and environmental gradients. J. Ecol. 107, 265–278 (2019).

    Article  Google Scholar 

  • 12.

    Wellborn, G. A., Skelly, D. K. & Werner, E. E. Mechanisms creating community structure across a freshwater habitat gradient. Annu. Rev. Ecol. Syst. 27, 337–363 (1996).

    Article  Google Scholar 

  • 13.

    Chamberlain, D. E., Cannon, A. R. & Toms, M. P. Associations of garden birds with gradients in garden habitat and local habitat. Ecography 27, 589–600 (2004).

    Article  Google Scholar 

  • 14.

    Pennings, S. C. & Silliman, B. R. Linking biogeography and community ecology: Latitudinal variation in plant–herbivore interaction strength. Ecology 86, 2310–2319 (2005).

    Article  Google Scholar 

  • 15.

    Chamberlain, S. A., Bronstein, J. L. & Rudgers, J. A. How context dependent are species interactions?. Ecol. Lett. 17, 881–890 (2014).

    PubMed  Article  Google Scholar 

  • 16.

    Kissling, W. D. et al. Towards novel approaches to modelling biotic interactions in multispecies assemblages at large spatial extents. J. Biogeogr. 39, 2163–2178 (2012).

    Article  Google Scholar 

  • 17.

    Rudolf, V. H. W. The role of seasonal timing and phenological shifts for species coexistence. Ecol. Lett. https://doi.org/10.1111/ele.13277 (2019).

    Article  PubMed  Google Scholar 

  • 18.

    Thompson, J. N. Variation in interspecific interactions. Annu. Rev. Ecol. Syst. 19, 65–87 (1988).

    Article  Google Scholar 

  • 19.

    Bar-Massada, A. & Belmaker, J. Non-stationarity in the co-occurrence patterns of species across environmental gradients. J. Ecol. 105, 391–399 (2017).

    Article  Google Scholar 

  • 20.

    Hengeveld, R. Biogeographical ecology. J. Biogeogr. 21, 341–351 (1994).

    Article  Google Scholar 

  • 21.

    Osborne, P. E., Foody, G. M. & Suárez-Seoane, S. Non-stationarity and local approaches to modelling the distributions of wildlife. Divers. Distrib. 13, 313–323 (2007).

    Article  Google Scholar 

  • 22.

    Clark, N. J., Wells, K. & Lindberg, O. Unravelling changing interspecific interactions across environmental gradients using Markov random fields. Ecology 99, 1277–1283 (2018).

    PubMed  Article  Google Scholar 

  • 23.

    Bryant, J. P., Chapin, F. S. & Klein, D. R. Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40, 357 (1981).

    Article  Google Scholar 

  • 24.

    Post, D. M., Palkovacs, E. P., Schielke, E. G. & Dodson, S. I. Intraspecific variation in a predator affects community structure and cascading trophic interactions. Ecology 89, 2019–2032 (2008).

    PubMed  Article  Google Scholar 

  • 25.

    Agrawal, A. A., Lau, J. A. & Hambäck, P. A. Community heterogeneity and the evolution of interactions between plants and insect herbivores. Q. Rev. Biol. 81, 349–376 (2006).

    PubMed  Article  Google Scholar 

  • 26.

    Lisboa, F. J. G. et al. Much beyond Mantel: Bringing procrustes association metric to the plant and soil ecologist’s toolbox. PLoS ONE 9, e101238 (2014).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 27.

    Kraft, A. J., Robinson, D. T., Evans, I. S. & Rooney, R. C. Concordance in wetland physicochemical conditions, vegetation, and surrounding land cover is robust to data extraction approach. PLoS ONE 14, e0216343 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 28.

    Toranza, C. & Arim, M. Cross-taxon congruence and environmental conditions. BMC Ecol. 10, 18 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  • 29.

    Rooney, R. C. & Bayley, S. E. Community congruence of plants, invertebrates and birds in natural and constructed shallow open-water wetlands: Do we need to monitor multiple assemblages?. Ecol. Indic. 20, 42–50 (2012).

    Article  Google Scholar 

  • 30.

    Larsen, S., Mancini, L., Pace, G., Scalici, M. & Tancioni, L. Weak concordance between fish and macroinvertebrates in Mediterranean streams. PLoS ONE 7, e51115 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 31.

    Heino, J., Paavola, R., Virtanen, R. & Muotka, T. Searching for biodiversity indicators in running waters: Do bryophytes, macroinvertebrates, and fish show congruent diversity patterns?. Biodivers. Conserv. 14, 415–428 (2005).

    Article  Google Scholar 

  • 32.

    Corte, G. N. et al. Cross-taxon congruence in benthic communities: Searching for surrogates in marine sediments. Ecol. Indic. 78, 173–182 (2017).

    Article  Google Scholar 

  • 33.

    Cracraft, J. & Prum, R. O. Pattern and processes of diversification: Speciation and historical congruence in some Neotropical birds. Evolution 42, 603–620 (1988).

    PubMed  Article  Google Scholar 

  • 34.

    Moritz, C. et al. Biogeographical concordance and efficiency of taxon indicators for establishing conservation priority in a tropical rainforest biota. Proc. R. Soc. Lond. Ser. B. 268, 1875–1881 (2001).

    CAS  Article  Google Scholar 

  • 35.

    Rooney, R. C. & Azeria, E. T. The strength of cross-taxon congruence in species composition varies with the size of regional species pools and the intensity of human disturbance. J. Biogeogr. 42, 439–451 (2014).

    Article  Google Scholar 

  • 36.

    Daniel, J., Gleason, J. E., Cottenie, K. & Rooney, R. C. Stochastic and deterministic processes drive wetland community assembly across a gradient of environmental filtering. Oikos 128, 1158–1169 (2019).

    Article  Google Scholar 

  • 37.

    Gleason, J. E. & Rooney, R. C. Pond permanence is a key determinant of aquatic macroinvertebrate community structure in wetlands. Freshw. Biol. 63, 264–277 (2018).

    Article  Google Scholar 

  • 38.

    Clark, J. S., Campbell, J. H., Grizzle, H., Acosta-Martìnez, V. & Zak, J. C. Soil microbial community response to drought and precipitation variability in the chihuahuan desert. Microb. Ecol. 57, 248–260 (2009).

    PubMed  Article  Google Scholar 

  • 39.

    Brock, M. A., Nielsen, D. L., Shiel, R. J., Green, J. D. & Langley, J. D. Drought and aquatic community resilience: The role of eggs and seeds in sediments of temporary wetlands. Freshw. Biol. https://doi.org/10.1046/j.1365-2427.2003.01083.x (2003).

    Article  Google Scholar 

  • 40.

    Stewart, R. E. & Kantrud, H. A. Classification of Natural Ponds and Lakes in the Glaciated Prairie Region. Bureau of Sport Fisheries and Wildlife Resource Publication 92, vol. 554 (1971).

  • 41.

    Euliss, N. H. et al. The wetland continuum: A conceptual framework for interpreting biological studies. Wetlands 24, 448–458 (2004).

    Article  Google Scholar 

  • 42.

    Wright, H. E. J. Quaternary history of Minnesota. In Geology of Minnesota: A Centennial (eds Sims, P. K. & Morey, G.) 515–546 (Minnesota Geological Survey University of Minnesota, Minnesota, 1972).

    Google Scholar 

  • 43.

    Sauchyn, D. J., Barrow, E. M., Hopkinson, R. F. & Leavitt, P. R. Aridity on the Canadian plains. Géogr. Phys. Quat. 56, 247–259 (2004).

    Google Scholar 

  • 44.

    Downing, D. J. & Pettapiece, W. W. Natural Regions and Subregions of Alberta. https://www.albertaparks.ca/media/2942026/nrsrcomplete_may_06.pdf (2006).

  • 45.

    Government of Alberta. Alberta Merged Wetland Inventory. (2014).

  • 46.

    Anderson, D. L. & Rooney, R. C. Differences exist in bird communities using restored and natural wetlands in the Parkland region, Alberta, Canada. Restor. Ecol. 27, 1495–1507 (2019).

    Article  Google Scholar 

  • 47.

    Meyer, M. D., Davis, C. A. & Bidwell, J. R. Assessment of two methods for sampling invertebrates in shallow vegetated wetlands. Wetlands 33, 1063–1073 (2013).

    Article  Google Scholar 

  • 48.

    Gleason, J. E. & Rooney, R. C. Aquatic macroinvertebrates are poor indicators of agricultural activity in northern prairie pothole wetlands. Ecol. Indic. 81, 333–339 (2017).

    Article  Google Scholar 

  • 49.

    Clifford, H. F. Aquatic Invertebrates of Alberta (University of Alberta Press, Edmonton, 1991).

    Google Scholar 

  • 50.

    Merrit, R. W., Cummins, K. W. & Berg, M. B. An Introduction to the Aquatic Insects of North America (Kendall Hunt Publishing Company, Dubuque, 2008).

    Google Scholar 

  • 51.

    Environment Canada. CABIN Laboratory Methods: Processing, Taxonomy, and Quality Control of Benthic Macroinvertebrate Samples. 36 (2014).

  • 52.

    Bolding, M. T., Kraft, A. J., Robinson, D. T. & Rooney, R. C. Improvements in multi-metric index development using a whole-index approach. Ecol. Indic. 113, 106191 (2020).

    Article  Google Scholar 

  • 53.

    Meyers, N. Use of Water Isotope Tracers to Characterize the Hydrology of Prairie Wetlands in Alberta (University of Waterloo, Waterloo, 2018).

    Google Scholar 

  • 54.

    Peres-Neto, P. R. & Jackson, D. A. How well do multivariate data sets match? The advantages of a procrustean superimposition approach over the Mantel test. Oecologia 129, 169–178 (2001).

    ADS  PubMed  Article  Google Scholar 

  • 55.

    Nekola, J. C. & White, P. S. The distance decay of similarity in biogeography and ecology. J. Biogeogr. 26, 867–878 (1999).

    Article  Google Scholar 

  • 56.

    Dijksterhuis, G. B. & Gower, J. C. The interpretation of generalized procrustes analysis and allied methods. Food Qual. Prefer. https://doi.org/10.1016/0950-3293(91)90027-C (1991).

    Article  Google Scholar 

  • 57.

    Oksanen, J. et al. vegan: Community Ecology Package. R Package Version 2.4–2 (2017).

  • 58.

    Broadbooks, W. J. & Elmore, P. B. A Monte Carlo study of the sampling distribution of the congruence coefficient. Educ. Psychol. Meas. 47, 1–11 (1987).

    Article  Google Scholar 

  • 59.

    Fife, D. fifer: A Biostatisticians Toolbox for Various Activities, Including Plotting, Data Cleanup, and Data Analysis. R package version 1.1. https://CRAN.R-project.org/package=fifer. (2017).

  • 60.

    Levine, J. M. Indirect facilitation: Evidence and predictions from a riparian community. Ecology 80, 1762 (1999).

    Article  Google Scholar 

  • 61.

    Maestre, F. T., Valladares, F. & Reynolds, J. F. Is the change of plant-plant interactions with abiotic stress predictable? A meta-analysis of field results in arid environments. J. Ecol. 93, 748–757 (2005).

    Article  Google Scholar 

  • 62.

    Lewis, J. S. et al. Biotic and abiotic factors predicting the global distribution and population density of an invasive large mammal. Sci. Rep. 7, 44152 (2017).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  • 63.

    Klanderud, K., Vandvik, V. & Goldberg, D. The importance of biotic vs. abiotic drivers of local plant community composition along regional bioclimatic gradients. PLoS ONE 10, e0130205 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 64.

    Lários, M. C. et al. Evidence of cross-taxon congruence in Neotropical wetlands: Importance of environmental and spatial factors. Glob. Ecol. Conserv. https://doi.org/10.1016/j.gecco.2017.09.003 (2017).

    Article  Google Scholar 

  • 65.

    Casanova, M. T. & Brock, M. A. How do depth, duration and frequency of flooding influence the establishment of wetland plant communities?. Plant Ecol. 147, 237–250 (2000).

    Article  Google Scholar 

  • 66.

    Murkin, H. R., Murkin, E. J. & Ball, J. P. Avian habitat selection and prairie wetland dynamics: A 10-year experiment. Ecol. Appl. 7, 1144–1159 (1997).

    Article  Google Scholar 

  • 67.

    Naugle, D. E., Johnson, R. R., Estey, M. E. & Higgins, K. F. A landscape approach to conserving wetland bird habitat in the Prairie Pothole Region of eastern South Dakota. Wetlands 20, 588–604 (2001).

    Article  Google Scholar 

  • 68.

    Mabidi, A., Bird, M. S. & Perissinotto, R. Distribution and diversity of aquatic macroinvertebrate assemblages in a semi-arid region earmarked for shale gas exploration (Eastern Cape Karoo, South Africa). PLoS ONE 12, e0178559 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 69.

    Panov, V. E. & Caceres, C. Role of diapause in dispersal of aquatic invertebrates. in Diapause in Aquatic Invertebrates Theory and Human Use 187–195 (Springer, New York, 2007). https://doi.org/10.1007/978-1-4020-5680-2_12.

  • 70.

    Faist, A. M., Ferrenberg, S. & Collinge, S. K. Banking on the past: Seed banks as a reservoir for rare and native species in restored vernal pools. AoB Plants 5, 1–10 (2013).

    Article  Google Scholar 

  • 71.

    Reynolds, C. & Cumming, G. S. Seed traits and bird species influence the dispersal parameters of wetland plants. Freshw. Biol. 61, 1157–1170 (2016).

    Article  Google Scholar 

  • 72.

    Klaassen, M. & Nolet, B. A. The role of herbivorous water birds in aquatic systems through interactions with aquatic macrophytes, with special reference to the Bewick’s Swan: Fennel Pondweed system. Hydrobiologia 584, 205–213 (2007).

    Article  Google Scholar 

  • 73.

    Kleyheeg, E. et al. Movement patterns of a keystone waterbird species are highly predictable from landscape configuration. Mov. Ecol. 5, 2 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 74.

    DeVlaming, V. & Proctor, V. W. Dispersal of aquatic organisms: viability of seeds recovered from the droppings of captive Killdeer and Mallard Ducks. Am. J. Bot. 55, 20 (2006).

    Article  Google Scholar 

  • 75.

    Ma, M., Ma, Z. & Du, G. Effects of water level on three wetlands soil seed banks on the Tibetan Plateau. PLoS ONE 9, e101458 (2014).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 76.

    Poiani, K. A. & Johnson, W. C. Effect of hydroperiod on seed-bank composition in semipermanent prairie wetlands. Can. J. Bot. 67, 856–864 (1989).

    Article  Google Scholar 

  • 77.

    Johnson, W. C. et al. Vulnerability of Northern Prairie wetlands to climate change. Bioscience 55, 863 (2005).

    Article  Google Scholar 

  • 78.

    Voldseth, R. A., Johnson, W. C., Gilmanov, T., Guntenspergen, G. R. & Millett, B. V. Model estimation of land-use effects on water levels of northern Prairie wetlands. Ecol. Appl. 17, 527–540 (2007).

    PubMed  Article  Google Scholar 


  • Source: Ecology - nature.com

    Scientists discover slimy microbes that may help keep coral reefs healthy

    Multiple life-stage inbreeding depression impacts demography and extinction risk in an extinct-in-the-wild species