Medlock, J. M. et al. An entomological review of invasive mosquitoes in Europe. Bull. Entomol. Res. 105, 637–663 (2015).
Google Scholar
Benedict, M. Q., Levine, R. S., Hawley, W. A. & Lounibos, L. P. Spread of the Tiger. Vector Borne Zoonotic Dis. 7, 76–85 (2007).
Google Scholar
Bonizzoni, M., Gasperi, G., Chen, X. & James, A. A. The invasive mosquito species Aedes albopictus: current knowledge and future perspectives. Trends Parasitol. 29, 460–468 (2013).
Google Scholar
Jourdain, F. et al. Towards harmonisation of entomological surveillance in the mediterranean area. PLoSNegl. Trop. Dis. 13, 1–28 (2019).
Kraemer, M. U. et al. Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nat. Microbiol. 4, 854–863 (2019).
Google Scholar
Kamal, M., Kenawy, M. A., Rady, M. H., Khaled, A. S. & Samy, A. M. Mapping the global potential distributions of two arboviral vectors Aedes aegypti and Ae. albopictus under changing climate. PLoS ONE 13, 1–21 (2018).
Proestos, Y. et al. Present and future projections of habitat suitability of the Asian tiger mosquito, a vector of viral pathogens, from global climate simulation. Philos. Trans. R. Soc. B Biol. Sci. 370, 20130554 (2015).
Google Scholar
Campbell, L. P. et al. Climate change influences on global distributions of dengue and chikungunya virus vectors. Philos. Trans. R. Soc. B Biol. Sci. 370, 20140135 (2015).
Google Scholar
Gossner, C. M., Ducheyne, E. & Schaffner, F. Increased risk for autochthonous vector-borne infections transmitted by Aedes albopictus in continental europe. Eurosurveillance 23, 2–7 (2018).
ECDC, E. C. for D. P. and C. & EFSA, E. F. S. A. Aedes albopictus—current known distribution: September 2020. Mosquito maps [internet]. https://ecdc.europa.eu/en/disease-vectors/surveillance-and-disease-data/mosquito-maps (2020).
Ding, F., Fu, J., Jiang, D., Hao, M. & Lin, G. Mapping the spatial distribution of Aedes aegypti and Aedes albopictus. Acta Trop. 178, 155–162 (2018).
Google Scholar
Kraemer, M. U. et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. Elife 4, 1–18 (2015).
Google Scholar
Santos, J. & Meneses, B. M. An integrated approach for the assessment of the Aedes aegypti and Aedes albopictus global spatial distribution, and determination of the zones susceptible to the development of Zika virus. Acta Trop. 168, 80–90 (2017).
Google Scholar
Kuhlisch, C., Kampen, H. & Walther, D. The Asian tiger mosquito Aedes albopictus (Diptera: Culicidae) in Central Germany: surveillance in its northernmost distribution area. Acta Trop. 188, 78–85 (2018).
Google Scholar
Vaux, A. G. C. et al. The challenge of invasive mosquito vectors in the U.K. during 2016–2018: a summary of the surveillance and control of Aedes albopictus. Med. Vet. Entomol. https://doi.org/10.1111/mve.12396 (2019).
Google Scholar
Metelmann, S. et al. The UK’s suitability for Aedes albopictus in current and future climates. J. R. Soc. Interface 16, 20180761 (2019).
Google Scholar
Petrić, M., Lalić, B., Ducheyne, E., Djurdjević, V. & Petrić, D. Modelling the regional impact of climate change on the suitability of the establishment of the Asian tiger mosquito (Aedes albopictus) in Serbia. Clim. Chang. 142, 361–374 (2017).
Google Scholar
Fischer, D., Thomas, S. M., Niemitz, F., Reineking, B. & Beierkuhnlein, C. Projection of climatic suitability for Aedes albopictusSkuse (Culicidae) in Europe under climate change conditions. Glob. Planet. Chang. 78, 54–64 (2011).
Google Scholar
Caminade, C. et al. Suitability of European climate for the Asian tiger mosquito Aedes albopictus: recent trends and future scenarios. J. R. Soc. Interface 9, 2708–2717 (2012).
Google Scholar
Fischer, D., Thomas, S. M., Neteler, M., Tjaden, N. B. & Beierkuhnlein, C. Climatic suitability of Aedes albopictus in Europe referring to climate change projections: comparison of mechanistic and correlative niche modelling approaches. Eurosurveillance 19, 1–13 (2014).
Kraemer, M. U. G. et al. The global compendium of Aedes aegypti and Ae. albopictus occurrence. Sci. Data 2, 1–8 (2015).
Google Scholar
Cunze, S., Kochmann, J., Koch, L. K. & Klimpel, S. Aedes albopictus and its environmental limits in Europe. PLoS ONE 11, 1–14 (2016).
Google Scholar
Shragai, T. & Harrington, L. C. Aedes albopictus (Diptera: Culicidae) on an invasive edge: abundance, spatial distribution, and habitat usage of larvae and pupae across urban and socioeconomic environmental gradients. J. Med. Entomol. 56, 472–482 (2019).
Google Scholar
Buisson, L., Thuiller, W., Casajus, N., Lek, S. & Grenouillet, G. Uncertainty in ensemble forecasting of species distribution. Glob. Chang. Biol. 16, 1145–1157 (2010).
Google Scholar
LaDeau, S. L., Allan, B. F., Leisnham, P. T. & Levy, M. Z. The ecological foundations of transmission potential and vector-borne disease in urban landscapes. Funct. Ecol. 29, 889–901 (2015).
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).
Acevedo, P. & Real, R. Favourability: concept, distinctive characteristics and potential usefulness. Naturwissenschaften 99, 515–522 (2012).
Google Scholar
Radosavljevic, A. & Anderson, R. P. Making better Maxent models of species distributions: complexity, overfitting and evaluation. J. Biogeogr. 41, 629–643 (2014).
Google Scholar
Pearson, R. G. Species’ distribution modeling for conservation educators and practitioners. Synth. Am. Museum Nat. Hist. 50, 54–89 (2007).
Capinha, C., Larson, E. R., Tricarico, E., Olden, J. D. & Gherardi, F. Effects of climate change, invasive species, and disease on the distribution of native european crayfishes. Conserv. Biol. 27, 731–740 (2013).
Google Scholar
Castellanos, A. A., Huntley, J. W., Voelker, G. & Lawing, A. M. Environmental filtering improves ecological niche models across multiple scales. Methods Ecol. Evol. 10, 481–492 (2019).
Google Scholar
Machín, L., Aschemann-Witzel, J., Curutchet, M. R., Giménez, A. & Ares, G. Traffic light system can increase healthfulness perception: implications for policy making. J. Nutr. Educ. Behav. 50, 668–674 (2018).
Google Scholar
OECD. Redefining Urban: A New Way to Measure Metropolitan Areas (OECD, 2012).
Google Scholar
Tippelt, L., Werner, D. & Kampen, H. Tolerance of three Aedes albopictus strains (Diptera: Culicidae) from different geographical origins towards winter temperatures under field conditions in northern Germany. PLoS ONE 14, e0219553 (2019).
Google Scholar
Li, R. et al. Climate-driven variation in mosquito density predicts the spatiotemporal dynamics of dengue. Proc. Natl. Acad. Sci. U. S. A. 116, 3624–3629 (2019).
Google Scholar
Murray, K. A. et al. Global biogeography of human infectious diseases. Proc. Natl. Acad. Sci. U. S. A. 112, 12746–12751 (2015).
Google Scholar
Shragai, T., Tesla, B., Murdock, C. & Harrington, L. C. Zika and chikungunya: mosquito-borne viruses in a changing world. Ann. N. Y. Acad. Sci. 1399, 61–77 (2017).
Google Scholar
Tjaden, N. B., Caminade, C., Beierkuhnlein, C. & Thomas, S. M. Mosquito-borne diseases: advances in modelling climate-change impacts. Trends Parasitol. 34, 227–245 (2018).
Google Scholar
Paupy, C., Delatte, H., Bagny, L., Corbel, V. & Fontenille, D. Aedes albopictus, an arbovirus vector: from the darkness to the light. Microb. Infect. 11, 1177–1185 (2009).
Google Scholar
Mariconti, M. et al. Estimating the risk of arbovirus transmission in Southern Europe using vector competence data. Sci. Rep. 9, 1–10 (2019).
Google Scholar
Egizi, A., Fefferman, N. H. & Fonseca, D. M. Evidence that implicit assumptions of ‘no evolution’ of disease vectors in changing environments can be violated on a rapid timescale. Philos. Trans. R. Soc. B Biol. Sci. 370, 1–10 (2015).
Google Scholar
Zeller, H., Marrama, L., Sudre, B., Van Bortel, W. & Warns-Petit, E. Mosquito-borne disease surveillance by the European Centre for Disease Prevention and Control. Clin. Microbiol. Infect. 19, 693–698 (2013).
Google Scholar
Fernandes, J. N., Moise, I. K., Maranto, G. L. & Beier, J. C. Revamping mosquito-borne disease control to tackle future threats. Trends Parasitol. 34, 359–368 (2018).
Google Scholar
Lwande, O. W., Obanda, V., Lindstro, A., Ahlm, C. & Evander, M. Risk factors for arbovirus pandemics. Vector-Borne Zoonotic Dis. 20, 71–81 (2019).
Google Scholar
Colón-González, F. J. et al. Limiting global-mean temperature increase to 1.5–2 °C could reduce the incidence and spatial spread of dengue fever in Latin America. Proc. Natl. Acad. Sci. U. S. A. 115, 6243–6248 (2019).
Google Scholar
Zheng, X., Zhong, D., He, Y. & Zhou, G. Seasonality modeling of the distribution of Aedes albopictus in China based on climatic and environmental suitability. Infect. Dis. Poverty 8, 1–9 (2019).
Google Scholar
Schaffner, F., Medlock, J. M. M. & Van Bortel, W. Public health significance of invasive mosquitoes in Europe. Clin. Microbiol. Infect. 19, 685–692 (2013).
Google Scholar
Rückert, C. & Ebel, G. D. How do virus-mosquito interactions lead to viral emergence?. Trends Parasitol. 34, 310–321 (2018).
Google Scholar
Sanna, M. & Hsieh, Y. H. Ascertaining the impact of public rapid transit system on spread of dengue in urban settings. Sci. Total Environ. 598, 1151–1159 (2017).
Google Scholar
Valerio, L. et al. Host-feeding patterns of Aedes albopictus (Diptera: Culicidae) in urban and rural contexts within Rome province, Italy. Vector-Borne Zoonotic Dis. 10, 291–294 (2010).
Google Scholar
Wen, T. H., Lin, M. H. & Fang, C. T. Population movement and vector-borne disease transmission: differentiating spatial-temporal diffusion patterns of commuting and noncommuting dengue cases. Ann. Assoc. Am. Geogr. 102, 1026–1037 (2012).
Google Scholar
Rogers, D. J. Dengue: recent past and future threats. Philos. Trans. R. Soc. B Biol. Sci. 370, 1–18 (2015).
Google Scholar
Source: Ecology - nature.com