in

Wide and increasing suitability for Aedes albopictus in Europe is congruent across distribution models

  • 1.

    Medlock, J. M. et al. An entomological review of invasive mosquitoes in Europe. Bull. Entomol. Res. 105, 637–663 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 2.

    Benedict, M. Q., Levine, R. S., Hawley, W. A. & Lounibos, L. P. Spread of the Tiger. Vector Borne Zoonotic Dis. 7, 76–85 (2007).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 3.

    Bonizzoni, M., Gasperi, G., Chen, X. & James, A. A. The invasive mosquito species Aedes albopictus: current knowledge and future perspectives. Trends Parasitol. 29, 460–468 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 4.

    Jourdain, F. et al. Towards harmonisation of entomological surveillance in the mediterranean area. PLoSNegl. Trop. Dis. 13, 1–28 (2019).

    Google Scholar 

  • 5.

    Kraemer, M. U. et al. Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nat. Microbiol. 4, 854–863 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 6.

    Kamal, M., Kenawy, M. A., Rady, M. H., Khaled, A. S. & Samy, A. M. Mapping the global potential distributions of two arboviral vectors Aedes aegypti and Ae. albopictus under changing climate. PLoS ONE 13, 1–21 (2018).

    Google Scholar 

  • 7.

    Proestos, Y. et al. Present and future projections of habitat suitability of the Asian tiger mosquito, a vector of viral pathogens, from global climate simulation. Philos. Trans. R. Soc. B Biol. Sci. 370, 20130554 (2015).

    Article 

    Google Scholar 

  • 8.

    Campbell, L. P. et al. Climate change influences on global distributions of dengue and chikungunya virus vectors. Philos. Trans. R. Soc. B Biol. Sci. 370, 20140135 (2015).

    Article 

    Google Scholar 

  • 9.

    Gossner, C. M., Ducheyne, E. & Schaffner, F. Increased risk for autochthonous vector-borne infections transmitted by Aedes albopictus in continental europe. Eurosurveillance 23, 2–7 (2018).

    Google Scholar 

  • 10.

    ECDC, E. C. for D. P. and C. & EFSA, E. F. S. A. Aedes albopictus—current known distribution: September 2020. Mosquito maps [internet]. https://ecdc.europa.eu/en/disease-vectors/surveillance-and-disease-data/mosquito-maps (2020).

  • 11.

    Ding, F., Fu, J., Jiang, D., Hao, M. & Lin, G. Mapping the spatial distribution of Aedes aegypti and Aedes albopictus. Acta Trop. 178, 155–162 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 12.

    Kraemer, M. U. et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. Elife 4, 1–18 (2015).

    Article 

    Google Scholar 

  • 13.

    Santos, J. & Meneses, B. M. An integrated approach for the assessment of the Aedes aegypti and Aedes albopictus global spatial distribution, and determination of the zones susceptible to the development of Zika virus. Acta Trop. 168, 80–90 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 14.

    Kuhlisch, C., Kampen, H. & Walther, D. The Asian tiger mosquito Aedes albopictus (Diptera: Culicidae) in Central Germany: surveillance in its northernmost distribution area. Acta Trop. 188, 78–85 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 15.

    Vaux, A. G. C. et al. The challenge of invasive mosquito vectors in the U.K. during 2016–2018: a summary of the surveillance and control of Aedes albopictus. Med. Vet. Entomol. https://doi.org/10.1111/mve.12396 (2019).

    PubMed 
    Article 

    Google Scholar 

  • 16.

    Metelmann, S. et al. The UK’s suitability for Aedes albopictus in current and future climates. J. R. Soc. Interface 16, 20180761 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 17.

    Petrić, M., Lalić, B., Ducheyne, E., Djurdjević, V. & Petrić, D. Modelling the regional impact of climate change on the suitability of the establishment of the Asian tiger mosquito (Aedes albopictus) in Serbia. Clim. Chang. 142, 361–374 (2017).

    ADS 
    Article 

    Google Scholar 

  • 18.

    Fischer, D., Thomas, S. M., Niemitz, F., Reineking, B. & Beierkuhnlein, C. Projection of climatic suitability for Aedes albopictusSkuse (Culicidae) in Europe under climate change conditions. Glob. Planet. Chang. 78, 54–64 (2011).

    ADS 
    Article 

    Google Scholar 

  • 19.

    Caminade, C. et al. Suitability of European climate for the Asian tiger mosquito Aedes albopictus: recent trends and future scenarios. J. R. Soc. Interface 9, 2708–2717 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 20.

    Fischer, D., Thomas, S. M., Neteler, M., Tjaden, N. B. & Beierkuhnlein, C. Climatic suitability of Aedes albopictus in Europe referring to climate change projections: comparison of mechanistic and correlative niche modelling approaches. Eurosurveillance 19, 1–13 (2014).

    Google Scholar 

  • 21.

    Kraemer, M. U. G. et al. The global compendium of Aedes aegypti and Ae. albopictus occurrence. Sci. Data 2, 1–8 (2015).

    Article 

    Google Scholar 

  • 22.

    Cunze, S., Kochmann, J., Koch, L. K. & Klimpel, S. Aedes albopictus and its environmental limits in Europe. PLoS ONE 11, 1–14 (2016).

    Article 
    CAS 

    Google Scholar 

  • 23.

    Shragai, T. & Harrington, L. C. Aedes albopictus (Diptera: Culicidae) on an invasive edge: abundance, spatial distribution, and habitat usage of larvae and pupae across urban and socioeconomic environmental gradients. J. Med. Entomol. 56, 472–482 (2019).

    PubMed 
    Article 

    Google Scholar 

  • 24.

    Buisson, L., Thuiller, W., Casajus, N., Lek, S. & Grenouillet, G. Uncertainty in ensemble forecasting of species distribution. Glob. Chang. Biol. 16, 1145–1157 (2010).

    ADS 
    Article 

    Google Scholar 

  • 25.

    LaDeau, S. L., Allan, B. F., Leisnham, P. T. & Levy, M. Z. The ecological foundations of transmission potential and vector-borne disease in urban landscapes. Funct. Ecol. 29, 889–901 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 26.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).

    Google Scholar 

  • 27.

    Acevedo, P. & Real, R. Favourability: concept, distinctive characteristics and potential usefulness. Naturwissenschaften 99, 515–522 (2012).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 28.

    Radosavljevic, A. & Anderson, R. P. Making better Maxent models of species distributions: complexity, overfitting and evaluation. J. Biogeogr. 41, 629–643 (2014).

    Article 

    Google Scholar 

  • 29.

    Pearson, R. G. Species’ distribution modeling for conservation educators and practitioners. Synth. Am. Museum Nat. Hist. 50, 54–89 (2007).

    Google Scholar 

  • 30.

    Capinha, C., Larson, E. R., Tricarico, E., Olden, J. D. & Gherardi, F. Effects of climate change, invasive species, and disease on the distribution of native european crayfishes. Conserv. Biol. 27, 731–740 (2013).

    PubMed 
    Article 

    Google Scholar 

  • 31.

    Castellanos, A. A., Huntley, J. W., Voelker, G. & Lawing, A. M. Environmental filtering improves ecological niche models across multiple scales. Methods Ecol. Evol. 10, 481–492 (2019).

    Article 

    Google Scholar 

  • 32.

    Machín, L., Aschemann-Witzel, J., Curutchet, M. R., Giménez, A. & Ares, G. Traffic light system can increase healthfulness perception: implications for policy making. J. Nutr. Educ. Behav. 50, 668–674 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 33.

    OECD. Redefining Urban: A New Way to Measure Metropolitan Areas (OECD, 2012).

    Book 

    Google Scholar 

  • 34.

    Tippelt, L., Werner, D. & Kampen, H. Tolerance of three Aedes albopictus strains (Diptera: Culicidae) from different geographical origins towards winter temperatures under field conditions in northern Germany. PLoS ONE 14, e0219553 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 35.

    Li, R. et al. Climate-driven variation in mosquito density predicts the spatiotemporal dynamics of dengue. Proc. Natl. Acad. Sci. U. S. A. 116, 3624–3629 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 36.

    Murray, K. A. et al. Global biogeography of human infectious diseases. Proc. Natl. Acad. Sci. U. S. A. 112, 12746–12751 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 37.

    Shragai, T., Tesla, B., Murdock, C. & Harrington, L. C. Zika and chikungunya: mosquito-borne viruses in a changing world. Ann. N. Y. Acad. Sci. 1399, 61–77 (2017).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 38.

    Tjaden, N. B., Caminade, C., Beierkuhnlein, C. & Thomas, S. M. Mosquito-borne diseases: advances in modelling climate-change impacts. Trends Parasitol. 34, 227–245 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 39.

    Paupy, C., Delatte, H., Bagny, L., Corbel, V. & Fontenille, D. Aedes albopictus, an arbovirus vector: from the darkness to the light. Microb. Infect. 11, 1177–1185 (2009).

    CAS 
    Article 

    Google Scholar 

  • 40.

    Mariconti, M. et al. Estimating the risk of arbovirus transmission in Southern Europe using vector competence data. Sci. Rep. 9, 1–10 (2019).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Egizi, A., Fefferman, N. H. & Fonseca, D. M. Evidence that implicit assumptions of ‘no evolution’ of disease vectors in changing environments can be violated on a rapid timescale. Philos. Trans. R. Soc. B Biol. Sci. 370, 1–10 (2015).

    Article 

    Google Scholar 

  • 42.

    Zeller, H., Marrama, L., Sudre, B., Van Bortel, W. & Warns-Petit, E. Mosquito-borne disease surveillance by the European Centre for Disease Prevention and Control. Clin. Microbiol. Infect. 19, 693–698 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 43.

    Fernandes, J. N., Moise, I. K., Maranto, G. L. & Beier, J. C. Revamping mosquito-borne disease control to tackle future threats. Trends Parasitol. 34, 359–368 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 44.

    Lwande, O. W., Obanda, V., Lindstro, A., Ahlm, C. & Evander, M. Risk factors for arbovirus pandemics. Vector-Borne Zoonotic Dis. 20, 71–81 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 45.

    Colón-González, F. J. et al. Limiting global-mean temperature increase to 1.5–2 °C could reduce the incidence and spatial spread of dengue fever in Latin America. Proc. Natl. Acad. Sci. U. S. A. 115, 6243–6248 (2019).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 46.

    Zheng, X., Zhong, D., He, Y. & Zhou, G. Seasonality modeling of the distribution of Aedes albopictus in China based on climatic and environmental suitability. Infect. Dis. Poverty 8, 1–9 (2019).

    CAS 
    Article 

    Google Scholar 

  • 47.

    Schaffner, F., Medlock, J. M. M. & Van Bortel, W. Public health significance of invasive mosquitoes in Europe. Clin. Microbiol. Infect. 19, 685–692 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 48.

    Rückert, C. & Ebel, G. D. How do virus-mosquito interactions lead to viral emergence?. Trends Parasitol. 34, 310–321 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 49.

    Sanna, M. & Hsieh, Y. H. Ascertaining the impact of public rapid transit system on spread of dengue in urban settings. Sci. Total Environ. 598, 1151–1159 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 50.

    Valerio, L. et al. Host-feeding patterns of Aedes albopictus (Diptera: Culicidae) in urban and rural contexts within Rome province, Italy. Vector-Borne Zoonotic Dis. 10, 291–294 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 51.

    Wen, T. H., Lin, M. H. & Fang, C. T. Population movement and vector-borne disease transmission: differentiating spatial-temporal diffusion patterns of commuting and noncommuting dengue cases. Ann. Assoc. Am. Geogr. 102, 1026–1037 (2012).

    Article 

    Google Scholar 

  • 52.

    Rogers, D. J. Dengue: recent past and future threats. Philos. Trans. R. Soc. B Biol. Sci. 370, 1–18 (2015).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Ekotrope makes building energy-efficient homes easier

    Using mechanics for cleaner membranes