in

Wildfire activity enhanced during phases of maximum orbital eccentricity and precessional forcing in the Early Jurassic

  • 1.

    Stocker, T. F. et al. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, 2013).

  • 2.

    Jones, M. W. et al. Climate change increases risk of wildfires. ScienceBrief Review 116, 117 (2020).

    Google Scholar 

  • 3.

    Rogers, B. M., Balch, J. K., Goetz, S. J., Lehmann, C. E. & Turetsky, M. Focus on changing fire regimes: interactions with climate, ecosystems, and society. Environmental Research Letters 15, 030201 (2020).

    Google Scholar 

  • 4.

    Archibald, S., Lehmann, C. E., Gómez-Dans, J. L. & Bradstock, R. A. Defining pyromes and global syndromes of fire regimes. Proceedings of the National Acadam of Science 110, 6442–6447 (2013).

    CAS 

    Google Scholar 

  • 5.

    Donovan, G. H. & Brown, T. C. Be careful what you wish for: the legacy of Smokey Bear. Frontiers in Ecology and the Environment 5, 73–79 (2007).

    Google Scholar 

  • 6.

    Ghil, M. Natural climate variability. Encyclopedia Global Environmental Change 1, 544–549 (2002).

    Google Scholar 

  • 7.

    Hinnov, L. A. Cyclostratigraphy and its revolutionizing applications in the earth and planetary sciences. Geological Society of America Bulletin 125, 1703–1734 (2013).

    Google Scholar 

  • 8.

    Lantink, M. L., Davies, J. H., Mason, P. R., Schaltegger, U. & Hilgen, F. J. Climate control on banded iron formations linked to orbital eccentricity. Nature Geoscience 12, 369–374 (2019).

    CAS 

    Google Scholar 

  • 9.

    Berger, A. Milankovitch theory and climate. Reviews of Geophysics 26, 624–657 (1988).

    Google Scholar 

  • 10.

    Laskar, J. Astrochronology in Geological Time Scale 2020 (eds Gradstein, F. M., Ogg, J. G., Schmitz, M. D. & Ogg, G. M.) 139–158 (Elsevier, 2020).

  • 11.

    Shackleton, N. J. & Pisias, S. N. Atmospheric carbon dioxide, orbital forcing, and climate. The Carbon Cycle and Atmospheric ({CO}_{2}): Natural Variations Archean to Present, Geophysics Monograph Series 32, 303–317 (1985).

  • 12.

    Huybers, P. & Wunsch, C. Obliquity pacing of the late Pleistocene glacial terminations. Nature 434, 491–494 (2005).

    CAS 

    Google Scholar 

  • 13.

    Kutzbach, J. E., Liu, X., Liu, Z. & Chen, G. Simulation of the evolutionary response of global summer monsoons to orbital forcing over the past 280,000 years. Climate Dynamics 30, 567–579 (2008).

    Google Scholar 

  • 14.

    Weedon, G. P. Hemipelagic shelf sedimentation and climatic cycles: the basal Jurassic (Blue Lias) of South Britain. Earth and Planetary Science Letters 76, 321–335 (1986).

    Google Scholar 

  • 15.

    Weedon, G. P., Jenkyns, H. C., Coe, A. L. & Hesselbo, S. P. Astronomical calibration of the Jurassic time-scale from cyclostratigraphy in British mudrock formations. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 357, 1787–1813 (1999).

    Google Scholar 

  • 16.

    Van Buchem, F. S. P., McCave, I. N. & Weedon, G. P. Orbitally induced small-scale cyclicity in a siliciclastic epicontinental setting (Lower Lias, Yorkshire, UK) in Orbital forcing and cyclic sequences, Special Publication of the International Association of Sedimentologists (eds de Boer, P. L. & Smith, D. G.) 345–366 (1994).

  • 17.

    Zachos, J. C., McCarren, H., Murphy, B., Röhl, U. & Westerhold, T. Tempo and scale of late Paleocene and early Eocene carbon isotope cycles: Implications for the origin of hyperthermals. Earth and Planetary Science Letters 299, 242–249 (2010).

    CAS 

    Google Scholar 

  • 18.

    Martinez, M. & Dera, G. Orbital pacing of carbon fluxes by a  9-My eccentricity cycle during the Mesozoic. Proceedings of the National Academy of Sciences 112, 12604–12609 (2015).

    CAS 

    Google Scholar 

  • 19.

    Laskar, J. The chaotic motion of the solar system: a numerical estimate of the size of the chaotic zones. Icarus 88, 266–291 (1990).

    Google Scholar 

  • 20.

    Varadi, F., Runnegar, B. & Ghil, M. Successive refinements in long-term integrations of planetary orbits. The Astrophysical Journal 592, 620 (2003).

    Google Scholar 

  • 21.

    Laskar, J. et al. Long term evolution and chaotic diffusion of the insolation quantities of Mars. Icarus 170, 343–364 (2004).

    Google Scholar 

  • 22.

    Imbrie, J. & Imbrie, K. P. Ice ages: solving the mystery (Harvard University Press, 1979).

  • 23.

    Berger, A. & Loutre, M. F. Climate 400,000 years ago, a key to the future? Geophysical Monograph Series 137, 17–26 (2003).

    Google Scholar 

  • 24.

    Laskar, J., Fienga, A., Gastineau, M. & Manche, H. La2010: a new orbital solution for the long-term motion of the Earth. Astronomy & Astrophysics 532, A89 (2011).

    Google Scholar 

  • 25.

    Verardo, D. J. & Ruddiman, W. F. Late Pleistocene charcoal in tropical Atlantic deep-sea sediments: climatic and geochemical significance. Geology 24, 855–857 (1996).

    CAS 

    Google Scholar 

  • 26.

    Thevenon, F., Bard, E., Williamson, D. & Beaufort, L. A biomass burning record from the West Equatorial Pacific over the last 360 ky: methodological, climatic and anthropic implications. Palaeogeography, Palaeoclimatology, Palaeoecology 213, 83–99 (2004).

    Google Scholar 

  • 27.

    Daniau, A. L. et al. Orbital-scale climate forcing of grassland burning in southern Africa. Proceedings of the National Academy of Sciences 110, 5069–5073 (2013).

    CAS 

    Google Scholar 

  • 28.

    Inoue, J., Okuyama, C. & Takemura, K. Long-term fire activity under the East Asian monsoon responding to spring insolation, vegetation type, global climate, and human impact inferred from charcoal records in Lake Biwa sediments in central Japan. Quaternary Science Reviews 179, 59–68 (2018).

    Google Scholar 

  • 29.

    Zhang, Z. et al. Precession-scale climate forcing of peatland wildfires during the early middle Jurassic greenhouse period. Global and Planetary Change 184, 103051 (2020).

    Google Scholar 

  • 30.

    Shi, Y. et al. Wildfire evolution and response to climate change in the Yinchuan Basin during the past 1.5 Ma based on the charcoal records of the PL02 core. Quaternary Science Reviews 241, 106393 (2020).

    Google Scholar 

  • 31.

    Martínez-Abarca, L. R. et al. Environmental changes during MIS6-3 in the Basin of Mexico: a record of fire, lake productivity history and vegetation. J. South American Earth Sciences 109, 103231 (2021).

    Google Scholar 

  • 32.

    Whitlock, C. & Larsen, C. Charcoal as a fire proxy in Tracking environmental change using lake sediments (eds Smol, J. P., Birks, H. J. B., Last, W. M., Bradley, R. S. & Alverson, K.) 75–97 (Springer, Dordrecht, 2002).

  • 33.

    Hao, Y., Han, Y., An, Z. & Burr, G. S. Climatic control of orbital time-scale wildfire occurrences since the late MIS 3 at Qinghai Lake, monsoon marginal zone. Quaternary International 550, 20–26 (2020).

    Google Scholar 

  • 34.

    Zhou, B. et al. Elemental carbon record of paleofire history on the Chinese Loess Plateau during the last 420 ka and its response to environmental and climate changes. Palaeogeography, Palaeoclimatology, Palaeoecology 252, 617–625 (2007).

    Google Scholar 

  • 35.

    Kappenberg, A., Lehndorff, E., Pickarski, N., Litt, T. & Amelung, W. Solar controls of fire events during the past 600,000 years. Quaternary Science Reviews 208, 97–104 (2019).

    Google Scholar 

  • 36.

    Han, Y. et al. Asian inland wildfires driven by glacial–interglacial climate change. Proceedings of the National Academy of Sciences 117, 5184–5189 (2020).

    CAS 

    Google Scholar 

  • 37.

    Scott, A. C. & Glasspool, I. J. Observations and experiments on the origin and formation of inertinite group macerals. International Journal of Coal Geology 70, 53–66 (2007).

    CAS 

    Google Scholar 

  • 38.

    House, M. R. A new approach to an absolute timescale from measurements of orbital cycles and sedimentary microrhythms. Nature 315, 721–725 (1985).

    Google Scholar 

  • 39.

    Hesselbo, S. P. & Jenkyns, H. C. A comparison of the Hettangian to Bajocian successions of Dorset and Yorkshire. Field Geology of the British Jurassic, Geological Society of London (1995).

  • 40.

    Weedon, G. P. & Jenkyns, H. C. Cyclostratigraphy and the Early Jurassic timescale: data from the Belemnite Marls, Dorset, southern England. Geological Society of America Bulletin 111, 1823–1840 (1999).

    Google Scholar 

  • 41.

    Ruhl, M. et al. Astronomical constraints on the duration of the early Jurassic Hettangian stage and recovery rates following the end-Triassic mass extinction (St Audrie’s Bay/East Quantoxhead, UK). Earth and Planetary Science Letters 295, 262–276 (2010).

    CAS 

    Google Scholar 

  • 42.

    Hüsing, S. K. et al. Astronomically-calibrated magnetostratigraphy of the lower Jurassic marine successions at St. Audrie’s Bay and East Quantoxhead (Hettangian–Sinemurian; Somerset, UK). Palaeogeography, Palaeoclimatology, Palaeoecology 403, 43–56 (2014).

    Google Scholar 

  • 43.

    Ruhl, M. et al. Astronomical constraints on the duration of the Early Jurassic Pliensbachian Stage and global climatic fluctuations. Earth and Planetary Science Letters 455, 149–165 (2016).

    CAS 

    Google Scholar 

  • 44.

    Xu, W., Ruhl, M., Hesselbo, S. P., Riding, J. B. & Jenkyns, H. C. Orbital pacing of the Early Jurassic carbon cycle, black‐shale formation and seabed methane seepage. Sedimentology 64, 127–149 (2017).

    CAS 

    Google Scholar 

  • 45.

    Hinnov, L. A., Ruhl, M. R. & Hesselbo, S. P. Reply to the Comment on “Astronomical constraints on the duration of the Early Jurassic Pliensbachian Stage and global climatic fluctuations” (Ruhl et al. Earth and Planetary Science Letters, 455 149–165). Earth and Planetary Science Letters 481, 415–419 (2018).

    CAS 

    Google Scholar 

  • 46.

    Storm, M. S. et al. Orbital pacing and secular evolution of the Early Jurassic carbon cycle. Proceedings National Academy Science 117, 3974–3982 (2020).

    CAS 

    Google Scholar 

  • 47.

    Ogg, J. G., Hinnov, L. A. & Huang, C. Jurassic in The geologic time scale (eds Gradstein, F. M., Ogg, J. G., Schmitz, M. D. & Ogg, G. M.) 731–791 (Elsevier, 2012).

  • 48.

    Hinnov, L. A. & Hilgen, F. J. Cyclostratigraphy and astrochronology in The Geologic Time Scale 2012 (eds Gradstein, F. M., Ogg, J. G., Schmitz, M. D. & Ogg, G. M.) 63–83 (2012).

  • 49.

    Deconinck, J. F., Hesselbo, S. P. & Pellenard, P. Climatic and sea‐level control of Jurassic (Pliensbachian) clay mineral sedimentation in the Cardigan Bay Basin, Llanbedr (Mochras Farm) borehole, Wales. Sedimentology 66, 2769–2783 (2019).

    Google Scholar 

  • 50.

    Chamley, H. Clay sedimentology 623 (Springer, Berlin, Heidelberg, 1989).

  • 51.

    Ruffell, A., McKinley, J. M. & Worden, R. H. Comparison of clay mineral stratigraphy to other proxy palaeoclimate indicators in the Mesozoic of NW Europe. Philosophical Transactions of the Royal Society London A: Mathematical, Physical and Engineering Sciences 360, 675–693 (2002).

    Google Scholar 

  • 52.

    Ghosh, S., Mukhopadhyay, J. & Chakraborty, A. Clay mineral and geochemical proxies for intense climate change in the permian gondwana rock record from eastern india. Research, 8974075 (2019).

  • 53.

    Oboh-Ikuenobe, F. E., Obi, C. G. & Jaramillo, C. A. Lithofacies, palynofacies, and sequence stratigraphy of Palaeogene strata in Southeastern Nigeria. Journal of African Earth Sciences 41, 79–101 (2005).

    Google Scholar 

  • 54.

    Sprovieri, M. et al. Late Cretaceous orbitally-paced carbon isotope stratigraphy from the Bottaccione Gorge (Italy). Palaeogeography, Palaeoclimatology, Palaeoecology 379, 81–94 (2013).

    Google Scholar 

  • 55.

    Raucsik, B. & Varga, A. Climato-environmental controls on clay mineralogy of the Hettangian–Bajocian successions of the Mecsek Mountains, Hungary: an evidence for extreme continental weathering during the early Toarcian oceanic anoxic event. Palaeogeography, Palaeoclimatology, Palaeoecology 265, 1–13 (2008).

    Google Scholar 

  • 56.

    Martinez, M. Mechanisms of preservation of the eccentricity and longer-term Milankovitch cycles in detrital supply and carbonate production in hemipelagic marl-limestone alternations. Stratigraphy & Timescales 3, 189–218 (2018).

    Google Scholar 

  • 57.

    Cochrane, M. A. & Ryan, K. C. Fire and fire ecology: Concepts and principles in Tropical fire ecology, 25–62 (2009).

  • 58.

    Belcher, C. M. & Hudspith, V. A. The formation of charcoal reflectance and its potential use in post-fire assessments. International Journal of Wildland Fire 25, 775–779 (2016).

    Google Scholar 

  • 59.

    Archibald, S. et al. Biological and geophysical feedbacks with fire in the Earth system. Environmental Research Letters 13, 033003 (2018).

    Google Scholar 

  • 60.

    Van de Schootbrugge, B. et al. Early Jurassic climate change and the radiation of organic-walled phytoplankton in the Tethys Ocean. Paleobiology 31, 73–97 (2005).

    Google Scholar 

  • 61.

    Vakhrameyev, V. A. Classopollis pollen as an indicator of Jurassic and Cretaceous climate. International Geology Review 24, 1190–1196 (1982).

    Google Scholar 

  • 62.

    Belcher, C. M., Collinson, M. E. & Scott, A. C. A 450-Million-Year History of Fire in Fire phenomena and the earth system (ed. Belcher, C. M.) 229–249 (Wiley-Blackwell, 2013).

  • 63.

    Rees, P. M., Ziegler, A. M. & Valdes, P. J. Jurassic phytogeography and climates: new data and model comparisons in Warm climates in earth history (eds Huber, B. T., Macleod, K. G. & Wing, S. L.) 297–318 (2000).

  • 64.

    Dera, G. et al. Distribution of clay minerals in Early Jurassic Peritethyan seas: palaeoclimatic significance inferred from multiproxy comparisons. Palaeogeography, Palaeoclimatology, Palaeoecology 271, 39–51 (2009).

    Google Scholar 

  • 65.

    Bonis, N. R., Ruhl, M. & Kürschner, W. M. Milankovitch-scale palynological turnover across the Triassic–Jurassic transition at St. Audrie’s Bay, SW UK. Journal of the Geological Society 167, 877–888 (2010).

    Google Scholar 

  • 66.

    Deconinck, J. F. et al. Diagenetic and environmental control of the clay mineralogy, organic matter and stable isotopes (C, O) of Jurassic (Pliensbachian-lowermost Toarcian) sediments of the Rodiles section (Asturian Basin, Northern Spain). Marine and Petroleum Geology 115, 104286 (2020).

    CAS 

    Google Scholar 

  • 67.

    Dewhirst, R. A., Smirnoff, N. & Belcher, C. M. Pine Species That Support Crown Fire Regimes Have Lower Leaf-Level Terpene Contents Than Those Native to Surface Fire Regimes. Fire 3, 17 (2020).

    Google Scholar 

  • 68.

    Berger, A., Loutre, M. F. & Dehant, V. Astronomical frequencies for pre‐Quaternary palaeoclimate studies. Terra Nova 1, 474–479 (1989).

    Google Scholar 

  • 69.

    House, M. R. & Gale, A. S. (eds). Orbital forcing timescales and cyclostratigraphy, 85, 1–18 (Geological Society, 1995).

  • 70.

    James, N. P. Facies models 7. Introduction to carbonate facies models. Geoscience Canada 4, 123–125 (1977).

    Google Scholar 

  • 71.

    Nelson, C. S., Keane, S. L. & Head, P. S. Non-tropical carbonate deposits on the modern New Zealand shelf. Sedimentary Geology 60, 71–94 (1988).

    CAS 

    Google Scholar 

  • 72.

    Chave, K. E. Recent carbonate sediments–an unconventional view. Journal of Geological Education 15, 200–204 (1967).

    CAS 

    Google Scholar 

  • 73.

    Parrish, J. T. & Curtis, R. L. Atmospheric circulation, upwelling, and organic-rich rocks in the Mesozoic and Cenozoic eras. Palaeogeography, Palaeoclimatology, Palaeoecology 40, 31–66 (1982).

    Google Scholar 

  • 74.

    Crowley, T. J., Baum, S. K. & Hyde, W. T. Milankovitch fluctuations on supercontinents. Geophysical research letters 19, 793–796 (1992).

    Google Scholar 

  • 75.

    Parrish, J. T. Climate of the supercontinent Pangea. The. J. Geology 101, 215–233 (1993).

    Google Scholar 

  • 76.

    Kutzbach, J. E. & Gallimore, R. G. Pangaean climates: megamonsoons of the megacontinent. Journal of Geophysical Research: Atmospheres 94, 3341–3357 (1989).

    Google Scholar 

  • 77.

    Kutzbach, J. E. Idealized Pangean climates: sensitivity to orbital change. Pangea; paleoclimate, tectonics, and sedimentation during accretion, zenith and breakup of a supercontinent. Geological Society of America 15, 41–55 (1994).

    Google Scholar 

  • 78.

    Sellwood, B. W. & Valdes, P. J. Mesozoic climates: General circulation models and the rock record. Sedimentary geology 190, 269–287 (2006).

    Google Scholar 

  • 79.

    Mutti, M. & Hallock, P. Carbonate systems along nutrient and temperature gradients: some sedimentological and geochemical constraints. International Journal of Earth Sciences 92, 465–475 (2003).

    CAS 

    Google Scholar 

  • 80.

    Clift, P. D., Wan, S. & Blusztajn, J. Reconstructing chemical weathering, physical erosion and monsoon intensity since 25 Ma in the northern South China Sea: a review of competing proxies. Earth-Science Reviews 130, 86–102 (2014).

    CAS 

    Google Scholar 

  • 81.

    Clift, P. D. et al. Chemical weathering and erosion responses to changing monsoon climate in the Late Miocene of Southwest Asia. Geological Magazine 157, 939–955 (2020).

    CAS 

    Google Scholar 

  • 82.

    Arocena, J. M. & Opio, C. Prescribed fire-induced changes in properties of sub-boreal forest soils. Geoderma 113, 1–16 (2003).

    CAS 

    Google Scholar 

  • 83.

    Certini, G. Effects of fire on properties of forest soils: a review. Oecologia 143, 1–10 (2005).

    Google Scholar 

  • 84.

    Reynard-Callanan, J. R., Pope, G. A., Gorring, M. L. & Feng, H. Effects of high-intensity forest fires on soil clay mineralogy. Physical Geography 31, 407–422 (2010).

    Google Scholar 

  • 85.

    Torsvik, T. & Cocks, L. Jurassic in Earth History and Palaeogeography 208–218 (Cambridge University Press, 2016).

  • 86.

    Bjerrum, C. J., Surlyk, F., Callomon, J. H. & Slingerland, R. L. Numerical paleoceanographic study of the Early Jurassic transcontinental Laurasian Seaway. Paleoceanography 16, 390–404 (2001).

    Google Scholar 

  • 87.

    Hesselbo, S. P. & Pieńkowski, G. Stepwise atmospheric carbon-isotope excursion during the Toarcian oceanic anoxic event (Early Jurassic, Polish Basin). Earth and Planetary Science Letters 301, 365–372 (2011).

    CAS 

    Google Scholar 

  • 88.

    Sellwood, B. W. & Jenkyns, H. G. Basins and swells and the evolution of an epeiric sea: (Pliensbachian–Bajocian of Great Britain). Journal of the Geological Society 131, 373–388 (1975).

    Google Scholar 

  • 89.

    Damborenea, S. E., Echevarría, J. & Ros-Franch, S. Southern hemisphere palaeobiogeography of Triassic-Jurassic marine bivalves. (Springer, 2012).

  • 90.

    Korte, C. et al. Jurassic climate mode governed by ocean gateway. Nature Communications 6, 1–7 (2015).

    Google Scholar 

  • 91.

    Dobson, M. R. & Whittington, R. J. The geology of Cardigan Bay. Proceedings of the Geologists’ Association 98, 331–353 (1987).

    Google Scholar 

  • 92.

    Woodland, A. W. The Llanbedr (Mochras Farm) Borehole Rep. No. 71/18 (Ed. Woodland, A. W.) 115 (Institute of Geological Sciences, 1971).

  • 93.

    Tappin, D. R. et al. The Geology of Cardigan Bay and the Bristol Channel. United Kingdom offshore regional report, British Geological Survey, HMSO, 107 (1994).

  • 94.

    Xu, W. et al. Evolution of the Toarcian (Early Jurassic) carbon-cycle and global climatic controls on local sedimentary processes (Cardigan Bay Basin, UK). Earth and Planetary Science Letters 484, 396–411 (2018).

    CAS 

    Google Scholar 

  • 95.

    Hesselbo, S. P. et al. Mochras borehole revisited: A new global standard for Early Jurassic earth history. Scientific Drilling 16, 81–91 (2013).

    Google Scholar 

  • 96.

    Moore, D. M. & Reynolds Jr, R. C. X-ray Diffraction and the Identification and Analysis of Clay Minerals (Oxford University Press, 1997).

  • 97.

    Petschick, R. MacDiff 4.1. 2. Powder diffraction software (2000). Available from the author at http://www.geol.uni-erlangen.de/html/software/Macdiff.html.

  • 98.

    Belcher, C. M., Collinson, M. E. & Scott, A. C. Constraints on the thermal energy released from the Chicxulub impactor: new evidence from multi-method charcoal analysis. Journal of the Geological Society 162, 591–602 (2005).

    Google Scholar 

  • 99.

    Scott, A. C. Charcoal recognition, taphonomy and uses in palaeoenvironmental analysis. Palaeogeography, Palaeoclimatology, Palaeoecology 291, 11–39 (2010).

    Google Scholar 

  • 100.

    Li, M., Hinnov, L. & Kump, L. Acycle: Time-series analysis software for paleoclimate research and education. Computers & Geosciences 127, 12–22 (2019).

    CAS 

    Google Scholar 

  • 101.

    Damaschke, M., Wylde, S., Jiang, M., Hollaar, T. & Ullmann, C. V. LLANBEDR (MOCHRAS FARM) Core Scanning Dataset. NERC EDS National Geoscience Data Centre. (Dataset). https://doi.org/10.5285/c09e9908-6a21-43a8-bc5a-944f9eb8b97e (2021).


  • Source: Ecology - nature.com

    Energy hackers give a glimpse of a postpandemic future

    An energy-storage solution that flows like soft-serve ice cream