in

Wolbachia reduces virus infection in a natural population of Drosophila

[adace-ad id="91168"]
  • 1.

    Weinert, L. A., Araujo-Jnr, E. V., Ahmed, M. Z. & Welch, J. J. The incidence of bacterial endosymbionts in terrestrial arthropods. Proc. R. Soc. B: Biol. Sci. 282, 20150249 (2015).

    Google Scholar 

  • 2.

    Werren, J. H. Biology of Wolbachia. Annu Rev. Entomol. 42, 587–609 (1997).

    CAS 
    PubMed 

    Google Scholar 

  • 3.

    Turelli, M. & Hoffmann, A. A. Rapid spread of an inherited incompatibility factor in California Drosophila. Nature 353, 440–442 (1991).

    CAS 
    PubMed 

    Google Scholar 

  • 4.

    Werren, J. H., Baldo, L. & Clark, M. E. Wolbachia: master manipulators of invertebrate biology. Nat. Rev. Microbiol. 6, 741–751 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 5.

    Teixeira, L., Ferreira, A. & Ashburner, M. The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. Plos Biol. 6, e2 (2008).

    PubMed 

    Google Scholar 

  • 6.

    Hedges, L. M., Brownlie, J. C., O’Neill, S. L. & Johnson, K. N. Wolbachia and virus protection in insects. Science 322, 702 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 7.

    Rocha, M. N. et al. Pluripotency of Wolbachia against Arboviruses: the case of yellow fever. Gates Open Res. 3, 161 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 8.

    Moreira, L. A. et al. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell 139, 1268–1278 (2009).

    PubMed 

    Google Scholar 

  • 9.

    Dutra, H. L. et al. Wolbachia blocks currently circulating zika virus isolates in Brazilian Aedes aegypti mosquitoes. Cell Host Microbe 19, 771–774 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    Aliota, M. T. et al. The wMel strain of Wolbachia reduces transmission of chikungunya virus in Aedes aegypti. PLoS Negl. Trop. Dis. 10, e0004677 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Schmidt, T. L. et al. Local introduction and heterogeneous spatial spread of dengue-suppressing Wolbachia through an urban population of Aedes aegypti. PLoS Biol. 15, e2001894 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 12.

    Ryan, P. A. et al. Establishment of wMel Wolbachia in Aedes aegypti mosquitoes and reduction of local dengue transmission in Cairns and surrounding locations in northern Queensland, Australia. Gates Open Res. 3, 1547 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Indriani, C. et al. Reduced dengue incidence following deployments of Wolbachia-infected Aedes aegypti in Yogyakarta, Indonesia: a quasi-experimental trial using controlled interrupted time series analysis. Gates Open Res. 4, 50 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    Zug, R. & Hammerstein, P. Bad guys turned nice? A critical assessment of Wolbachia mutualisms in arthropod hosts. Biol. Rev. Camb. Philos. Soc. 90, 89–111 (2015).

    PubMed 

    Google Scholar 

  • 15.

    Shi, M. et al. No detectable effect of Wolbachia wMel on the prevalence and abundance of the RNA virome of Drosophila melanogaster. Proc. Biol. Sci. https://doi.org/10.1098/rspb.2018.1165 (2018).

  • 16.

    Webster, C. L. et al. The discovery, distribution, and evolution of viruses associated with Drosophila melanogaster. PLoS Biol. 13, e1002210 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    Pimentel, A. C., Cesar, C. S., Martins, M. & Cogni, R. The antiviral effects of the symbiont bacteria Wolbachia in insects. Front Immunol. 11, 626329 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 18.

    Kriesner, P., Hoffmann, A. A., Lee, S. F., Turelli, M. & Weeks, A. R. Rapid sequential spread of two Wolbachia variants in Drosophila simulans. PLoS Pathog. 9, e1003607 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Weeks, A. R., Turelli, M., Harcombe, W. R., Reynolds, K. T. & Hoffmann, A. A. From parasite to mutualist: rapid evolution of Wolbachia in natural populations of Drosophila. PLoS Biol. 5, e114 (2007).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 20.

    Hoffmann, A. A. & Turelli, M. Unidirectional incompatibility in Drosophila simulans: inheritance, geographic variation and fitness effects. Genetics 119, 435–444 (1988).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Cross, S. T. et al. Partitiviruses infecting Drosophila melanogaster and Aedes aegypti exhibit efficient biparental vertical transmission. J. Virol. https://doi.org/10.1128/jvi.01070-20 (2020).

  • 22.

    Webster, C. L., Longdon, B., Lewis, S. H. & Obbard, D. J. Twenty-five new viruses associated with the Drosophilidae (Diptera). Evolut. Bioinforma. online 12, 13–25 (2016).

    CAS 

    Google Scholar 

  • 23.

    Jousset, F. X. & Plus, N. Study of the vertical transmission and horizontal transmission of “Drosophila melanogaster” and “Drosophila immigrans” picornavirus (author’s transl). Ann. Microbiol. 126, 231–249 (1975).

    CAS 

    Google Scholar 

  • 24.

    Jousset, F. X., Plus, N., Croizier, G. & Thomas, M. Existence in Drosophila of 2 groups of picornavirus with different biological and serological properties. C. R. Acad. Hebd. Seances Acad. Sci. D. 275, 3043–3046 (1972).

    CAS 
    PubMed 

    Google Scholar 

  • 25.

    Kapun, M. et al. Genomic Analysis of European Drosophila melanogaster populations reveals longitudinal structure, continent-wide selection, and previously unknown DNA viruses. Mol. Biol. Evol. 37, 2661–2678 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 26.

    Medd, N. C. et al. The virome of Drosophila suzukii, an invasive pest of soft fruit. Virus Evol. 4, vey009 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Longdon, B. et al. The evolution, diversity, and host associations of rhabdoviruses. Virus Evol. 1, vev014 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Schoonvaere, K., Smagghe, G., Francis, F. & de Graaf, D. C. Study of the metatranscriptome of eight social and solitary wild bee species reveals novel viruses and bee parasites. Front. Microbiol. 9, 177 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Pettersson, J. H., Shi, M., Eden, J. S., Holmes, E. C. & Hesson, J. C. Meta-transcriptomic comparison of the RNA viromes of the mosquito vectors Culex pipiens and Culex torrentium in Northern Europe. Viruses https://doi.org/10.3390/v11111033 (2019).

  • 30.

    Mahar, J. E., Shi, M., Hall, R. N., Strive, T. & Holmes, E. C. Comparative analysis of RNA virome composition in rabbits and associated ectoparasites. J. Virol. https://doi.org/10.1128/jvi.02119-19 (2020).

  • 31.

    Martinez, J. et al. Symbionts commonly provide broad spectrum resistance to viruses in insects: a comparative analysis of Wolbachia strains. PLoS Pathogens https://doi.org/10.1371/journal.ppat.1004369 (2014).

  • 32.

    Cross, S. T. et al. Galbut virus infection minimally influences Drosophila melanogaster fitness traits in a strain and sex-dependent manner. Preprint at bioRxiv https://doi.org/10.1101/2021.05.18.444759 (2021).

  • 33.

    Yampolsky, L. Y., Webb, C. T., Shabalina, S. A. & Kondrashov, A. S. Rapid accumulation of a vertically transmitted parasite triggered by relaxation of natural selection among hosts. Evolut. Ecol. Res. 1, 581–589 (1999).

    Google Scholar 

  • 34.

    Wilfert, L. & Jiggins, F. M. The dynamics of reciprocal selective sweeps of host resistance and a parasite counter-adaptation in Drosophila. Evolution 67, 761–773 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 35.

    Chrostek, E., Martins, N., Marialva, M. S. & Teixeira, L. Wolbachia conferred antiviral protection is determined by developmental temperature. mBio 12, e0292320 (2021).

    PubMed 

    Google Scholar 

  • 36.

    Ortiz-Baez, A. S., Shi, M., Hoffmann, A. A. & Holmes, E. C. RNA virome diversity and Wolbachia infection in individual Drosophila simulans flies. J. Gen. Virol. 102, 001639 (2021).

    Google Scholar 

  • 37.

    Haine, E. R. Symbiont-mediated protection. Proc. Biol. Sci. 275, 353–361 (2008).

    PubMed 

    Google Scholar 

  • 38.

    Martinez, J. et al. Addicted? Reduced host resistance in populations with defensive symbionts. Proc. Biol. Sci. https://doi.org/10.1098/rspb.2016.0778 (2016).

  • 39.

    Cogni, R. et al. Variation in Drosophila melanogaster central metabolic genes appears driven by natural selection both within and between populations. P R. Soc. B-Biol. Sci. 282, 20142688 (2015).

    CAS 

    Google Scholar 

  • 40.

    Cogni, R. et al. On the long-term stability of clines in some metabolic genes in Drosophila melanogaster. Sci. Rep. https://doi.org/10.1038/srep42766 (2017).

  • 41.

    Longdon, B. et al. The causes and consequences of changes in virulence following pathogen host shifts. PLoS Pathogens https://doi.org/10.1371/journal.ppat.1004728 (2015).

  • 42.

    Longdon, B., Hadfield, J. D., Webster, C. L., Obbard, D. J. & Jiggins, F. M. Host phylogeny determines viral persistence and replication in novel hosts. PLoS Pathog. 7, e1002260 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 43.

    Meyer, M. & Kircher, M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc. 2010, pdb.prot5448 (2010).

    PubMed 

    Google Scholar 

  • 44.

    Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 45.

    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 46.

    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 47.

    Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 48.

    Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).

    CAS 

    Google Scholar 

  • 49.

    Notredame, C., Higgins, D. G. & Heringa, J. T-Coffee: a novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 302, 205–217 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • 50.

    Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Coyle, M. C., Elya, C. N., Bronski, M. & Eisen, M. B. Entomophthovirus: an insect-derived iflavirus that infects a behavior manipulating fungal pathogen of dipterans. Preprint at bioRxiv https://doi.org/10.1101/371526 (2018).

  • 52.

    Longdon, B. et al. Vertically transmitted rhabdoviruses are found across three insect families and have dynamic interactions with their hosts. P Roy Soc B-Biol Sci https://doi.org/10.1098/rspb.2016.2381 (2017).

  • 53.

    Untergasser, A. et al. Primer3-new capabilities and interfaces. Nucleic Acids Res. 40, e115 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    Ye, J. et al. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinforma. 13, 134 (2012).

    CAS 

    Google Scholar 

  • 55.

    Lefever, S., Pattyn, F., Hellemans, J. & Vandesompele, J. Single-nucleotide polymorphisms and other mismatches reduce performance of quantitative PCR assays. Clin. Chem. 59, 1470–1480 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 56.

    Hadfield, J. D. MCMC Methods for Multi-Response Generalized Linear Mixed Models: The MCMCglmm R Package. 2010 33, 22, (2010).

  • 57.

    Cogni, R., Ding, S. D., Pimentel, A. C., Day, J. P. & Jiggins, F. M. https://doi.org/10.5281/zenodo.5525967 (Zenodo 2021).


  • Source: Ecology - nature.com

    Spatial scale and the synchrony of ecological disruption

    Urbanization favors the proliferation of Aedes aegypti and Culex quinquefasciatus in urban areas of Miami-Dade County, Florida