in

Wood ants as biological control of the forest pest beetles Ips spp.

  • 1.

    Stork, N. E., McBroom, J., Gely, C. & Hamilton, A. J. New approaches narrow global species estimates for beetles, insects, and terrestrial arthropods. PNAS 112, 7519–7752 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 2.

    Sømme, L. & Block, W. Adaptations to alpine and polar environments in insects and other terrestrial arthropods. In Insects at Low Temperature (eds Lee, R. E. & Denlinger, D. L.) (Springer, 1991).

    Google Scholar 

  • 3.

    Springer, M. Marine insects. In: Marine Biodiversity of Costa Rica, Central America. (ed. Wehrtmann, I. S. & Cortés, J.) Monographiae Biologicae, vol 86. (Springer, 2009).

  • 4.

    Cebeci, H. H. et al. The wood boring insects (Coleoptera: Cerambycidae and Buprestidae) recorded as the new pests for acer Undulatum Pojark from the Babadag mountain (SW Turkey). Fresenius Environ. Bull. 27, 9325–9328 (2018).

    CAS 

    Google Scholar 

  • 5.

    Becker, G. Untersuchungen über die Ernährungsphysiologie der Hausbockkäferlarven. Z. Vgl. Physiol. 29, 315–388 (1942).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Nardi, J. B., Mackie, R. I. & Dawson, J. O. Could microbial symbionts of arthropod guts contribute significantly to nitrogen fixation in terrestrial ecosystems?. J. Insect Physiol. 48, 751–763 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 7.

    Wermelinger, B., Duelli, P. & Obrist, M. K. Dynamics of saproxylic beetles (Coleoptera) in windthrow areas in alpine spruce forests. For. Snow Landsc. 77, 133–148 (2002).

    Google Scholar 

  • 8.

    Evans, H. F., Moraal, L. G. & Pajares, J. A. Biology, ecology and economic importance of Buprestidae and Cerambycidae. In: Bark and Wood Boring Insects in Living Trees in Europe, a Synthesis (ed. Lieutier, F., Day, K. R., Battisti, A., Grégoire, J. C. & Evans, H. F.) 447–474 (Springer, 2004).

  • 9.

    FAO (Food and Agriculture Organization of the United Nations) Global review of forest pests and diseases. FAO Forestry Paper 156 (2009).

  • 10.

    Offenberg, J., Nielsen, J. S. & Damgaard, V. Wood Ant (Formica polyctena) services and disservices in a danish apple plantation. Sociobiology 66, 247–256 (2019).

    Article 

    Google Scholar 

  • 11.

    Cline, A., Ivie, M. A., Bellamy, C. L. & Scher, J. A Resource for Wood Boring Beetles of the World: Wood Boring Beetle Families, Lucid v. 3.4. USDA/APHIS/PPQ Center for Plant Health Science and Technology, Montana State University, and California Department of Food and Agriculture. http://www.lucidcentral.org/keys/v3/WBB (2009).

  • 12.

    Rudinski, J. A. Ecology of Scolytidae. Annu. Rev. Entomol. 7, 327–348 (1962).

    Article 

    Google Scholar 

  • 13.

    Huber, D. P. W., Aukema, B. H., Hodgkinson, R. S. & Lindgren, B. S. Successful colonization, reproduction, and new generation emergence in live interior hybrid spruce, Picea engelmannii x glauca, by mountain pine beetle, Dendroctonus ponderosae. Agric. For. Entomol. 11, 83–89 (2009).

    Article 

    Google Scholar 

  • 14.

    O’neill, K. M., Fultz, J. E. & Ivie, M. A. Distribution of adult Cerambycidae and Buprestidae (Coleoptera) in a subalpine forest under shelterwood management. Coleopt. Bull. 62(1), 27–36 (2008).

    Article 

    Google Scholar 

  • 15.

    Leather, S. R., Day, K. R. & Salisbury, A. N. The biology and ecology of the large pine weevil, Hylobius abietis (Coleoptera: Curculionidae): A problem of dispersal?. Bull. Entomol. Res. 89, 3–16 (1999).

    Article 

    Google Scholar 

  • 16.

    Nordlander, G., Bylund, H., Örlander, G. & Wallertz, K. Pine weevil population density and damage to coniferous seedlings in a regeneration area with and without shelterwood. Scand. J. For. Res. 18, 438–448 (2003).

    Article 

    Google Scholar 

  • 17.

    Nordlander, G., Hellqvist, C., Johansson, K. & Nordenhem, H. Regeneration of European boreal forests: Effectiveness of measures against seedling mortality caused by the pine weevil Hylobius abietis. For. Ecol. Manag. 262(12), 2354–2363 (2011).

    Article 

    Google Scholar 

  • 18.

    Bale, J. S. et al. Herbivory in global climate change research: Direct effects of rising temperature on insect herbivores. Glob. Change Biol. 8, 1–16 (2002).

    ADS 
    Article 

    Google Scholar 

  • 19.

    Kahuthia-Gathu, R., Kirubi, D. T. & Gitonga, D. Composition and abundance ofwood-boring beetles of Acacia xanthophloea and their associated natural enemies in Thika, Kenya. J. Asia Pac. Biodivers. 11, 248–254 (2018).

    Article 

    Google Scholar 

  • 20.

    Holmes, T. & Koch, F. Bark beetle epidemics, life satisfaction, and economic well-being. Forests 10, 696 (2019).

    Article 

    Google Scholar 

  • 21.

    Adlung, K. G. A critical evaluation of the European research on use of red wood ants (Formica rufa group) for the protection of forests against harmful insects. Z. Angew. Entomol. 57, 167–189 (1966).

    Article 

    Google Scholar 

  • 22.

    Goldazarena, A., Romón, P. & López, S. Bark beetles control in forests of Northern Spain. Integrated Pest Management and Pest Control—Current and Future Tactics, Dr. Sonia Soloneski (Ed), ISBN: 978-953-51-0050-8, In Tech. http://www.intechopen.com/books/integrated-pest-management-and-pest-control-current-and-future-tactics/bark-beetles-control-in-forests-of-northern-spain (2012).

  • 23.

    IUCN 2020. The IUCN Red List of Threatened Species. Version 2020-1. https://www.iucnredlist.org (2020).

  • 24.

    Abdullah, H., Darvishzadeh, R., Skidmore, A. K., Groen, T. A. & Heurich, M. European spruce bark beetle (Ips typographus, L.) green attack affects foliar reflectance and biochemical properties. Int. J. Appl. Earth Obs. 64, 199–209 (2018).

    Article 

    Google Scholar 

  • 25.

    Bentz, B. J. & Jӧnsson, A. M. Modeling bark beetle responses to climate change. In Bark Beetles: Biology and Ecology of Native and Invasive Species (eds Vega, F. & Hofstetter, R.) 533–553 (Elsevier Academic Press, 2015).

    Chapter 

    Google Scholar 

  • 26.

    Linder, M. et al. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For Ecol. Manag. 259, 698–709 (2010).

    Article 

    Google Scholar 

  • 27.

    Marini, L. et al. Climate drivers of bark beetle outbreak dynamics in Norway spruce forests. Ecography 40, 1426–1435 (2017).

    Article 

    Google Scholar 

  • 28.

    Schowalter, T. D. Insect ecology: an ecosystem approach, 3rd ed. (ed. Schowalter, T. D.) (Academic Press, 2011).

  • 29.

    Frizzi, F., Masoni, A., Quilghini, G., Ciampelli, P. & Santini, G. Chronicle of an impact foretold: The fate and effect of the introduced Formica paralugubris ant. Biol. Invasions 20, 3575–3589 (2018).

    Article 

    Google Scholar 

  • 30.

    Leong, M. et al. The habitats humans provide: Factors affecting the diversity and composition of arthropods in houses. Sci. Rep. 7, 15347 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 31.

    Schweiger, O. et al. Quantifying the impact of environmental factors on arthropod communities in agricultural landscapes across organisational levels and spatial scales. J. Appl. Ecol. 42, 1129–1139 (2005).

    Article 

    Google Scholar 

  • 32.

    Trigos-Peral, G. et al. Three categories of urban green areas and the effect of their different management on the communities of ants, spiders and harvestmen. Urban Ecosyst. 23, 803–818 (2020).

    Article 

    Google Scholar 

  • 33.

    Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 34.

    Czechowski, W., Radchenko, A., Czechowska, W. & Vepsäläinen, K. The ants of Poland with reference to the myrmecofauna of Europe. Fauna Poloniae 4 (Natura optima dux Foundation, 2012).

  • 35.

    Seidl, R. et al. Forest disturbances under climate change. Nat. Clim. Chang. 7, 395–402 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 36.

    Sommerfeld, A. et al. Patterns and drivers of recent disturbances across the temperate forest biome. Nat. Commun. 9, 4355 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 37.

    Sorvari, J. & Hakkarainen, H. Wood ants are wood ants: Deforestation causes population declines in the polydomous wood ant Formica aquilonia. Ecol. Entomol. 32, 707–711 (2007).

    Article 

    Google Scholar 

  • 38.

    Roura-Pascual, N. et al. Geographic potential of Argentine ants (Linepithema humile Mayr) in the face of global climate change. Proc. R. Soc. Lond. B. 271(1557), 2527–2535 (2004).

    Article 

    Google Scholar 

  • 39.

    Kroll, J. C. & Fleet, R. R. Impact of woodpecker predation on over-wintering within-tree populations of the southern pine beetle (Dendroctonus frontalis). In The Role of Insectivorous Birds in Forest Ecosystems (eds Dickson, J. G. et al.) 269–281 (Academic Press, 1979).

    Chapter 

    Google Scholar 

  • 40.

    Khanday, A. L., Sureshan, P. M., Buhroo, A. A., Ranjith, A. P. & Tselikh, E. Pteromalid wasps (Hymenoptera: Chalcidoidea) associated with bark beetles, with the description of a new species from Kashmir, India. J. Asia Pac. Biodivers. 12, 262–272 (2019).

    Article 

    Google Scholar 

  • 41.

    Reeve, J. D. Predation and bark beetle dynamics. Oecologia 112, 48–54 (1997).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 42.

    Curtsdotter, A. et al. Ecosystem function in predator–prey food webs confronting dynamic models with empirical data. J. Anim. Ecol. 88, 196–210 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 43.

    Choate, B. & Drummond, F. A. Ants as biological control agents in agricultural cropping systems. Terr. Arthropod Rev. 4, 157–180 (2011).

    Article 

    Google Scholar 

  • 44.

    Maňák, V., Björklund, N., Lenoir, L. & Nordlander, G. The effect of red wood ant abundance on feeding damage by the pine weevil Hylobius abietis. Agric. For. Entomol. 17, 57–63 (2015).

    Article 

    Google Scholar 

  • 45.

    Robinson, E. J. H., Stockan, J. A. & Glenn, R. I. Wood ants and their interaction with other organisms. In Wood Ant Ecology and Conservation (eds Stockan, A. & Robinson, E. J. H.) 177–206 (Cambridge Universsity Press, 2016).

    Google Scholar 

  • 46.

    Sorvari, J. Foraging distances and potentiality in forest pest insect control: An example with two candidate ants (Hymenoptera: Formicidae). Myrmecol. News 12, 211–215 (2009).

    Google Scholar 

  • 47.

    Gößwald, K. Die Waldameise im Ökosystem Wald, ihr Nutzen und ihre Hege. Aula Verlag, Wiesbaden, 510 pp (1990). (shortened editon is 978-3-89104-755-2 (ISBN)).

  • 48.

    Juhász, O. et al. Large- and small-scale environmental factors drive distributions of ant mound size across a latitudinal gradient. Insects 11, 350 (2020).

    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • 49.

    Juhász, O. et al. Consequences of climate change-induced habitat conversions on red wood ants in a Central European mountain: a case study. Animals 10, 1677 (2020).

    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • 50.

    Risch, A., Ellis, S. & Wiswell, H. Where and why? Wood ant population ecology. In Wood Ant Ecology and Conservation (eds Stockan, A. & Robinson, E. J. H.) 81–105 (Cambridge Universsity Press, 2016).

    Google Scholar 

  • 51.

    R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org/ (2020).

  • 52.

    Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., Szoecs, E., Wagner, H. Vegan: Community Ecology Package (2019).

  • 53.

    Roberts, D.W. (2010) labdsv: Ordination and Multivariate Analysis for Ecology. http://cran.r-project.org/package=labdsv

  • 54.

    Bates, D., Maechler, M., Bolker, B. & Walke, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67(1), 1–48 (2015).

    Article 

    Google Scholar 

  • 55.

    Hartig, F. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 0.1. 0. CRAN/GitHub (2016).

  • 56.

    Lindén, A. & Mäntyniemi, S. Using the negative binomial distribution to model overdispersion in ecological count data. Ecology 97, 1414–1421 (2011).

    Article 

    Google Scholar 

  • 57.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).

    MATH 
    Book 

    Google Scholar 

  • 58.

    Schowalter, T. D. Ecology and management of bark beetles (Coleoptera: Curculionidae: Scolytinae) in Southern Pine Forests. J. Integ. Pest Mngmt. 3, 1–7 (2012).

    Article 

    Google Scholar 

  • 59.

    Hölldobler, B. & Wilson, E. O. The Ants (Harvard University Press, 1990).

    Book 

    Google Scholar 

  • 60.

    Siemann, E., Haarstad, J. & Tilman, D. Dynamics of plant and arthropod diversity during old field succession. Ecography 22, 406–414 (1999).

    Article 

    Google Scholar 

  • 61.

    Schlyte, F. & Anderbrandt, O. Competition and niche separation between two bark beetles: Existence and mechanisms. Oikos 68, 437–447 (1993).

    Article 

    Google Scholar 

  • 62.

    Raffa, K. F. et al. Cross-scale drivers of natural disturbances prone to anthropogenic amplification: The dynamics of bark beetle eruptions. BioSci 58, 501–517 (2008).

    Article 

    Google Scholar 

  • 63.

    Drees, B. M., Jackman, J. A. & Merchant, M. E. Wood-Boring Insects of Trees and Shrub. Texas Agricultural Extension Service. http://hdl.handle.net/1969.1/160397 (1994).

  • 64.

    Ray, C. et al. Patterns of woodboring beetle activity following fires and bark beetle outbreaks in montane forests of California, USA. Fire Ecol. 15, 21 (2019).

    Article 

    Google Scholar 

  • 65.

    Risch, S. J. & Carroll, C. R. The ecological role of ants in two Mexican agroecosystems. Oecologia 55, 114–119 (1982).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 66.

    Maák, I. et al. Behaviours indicating cannibalistic necrophagy in ants are modulated by the perception of pathogen infection level. Sci. Rep. 10, 17906 (2020).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 67.

    Doležal, P. & Sehnal, F. A simple method for the detection of imaginal diapause in beetles. J. Appl. Entomol. 131(3), 221–223 (2007).

    Article 

    Google Scholar 

  • 68.

    Horstmann, K. Untersuchungen ueber den Nahrungserwerb der Waldameisen (Formica polyctena Foerster) im Eichenwald II Abhaengigkeit vom Jahresverlauf und vom Nahrungsangebot. Oecologia (Berlin) 8, 371–390 (1972).

    ADS 
    Article 

    Google Scholar 

  • 69.

    Overbeck, M. & Schmidt, M. Modelling infestation risk of Norway spruce by Ips typographus (L.) in the Lower Saxon Harz Mountains (Germany). For. Ecol. Manag. 266, 115–125 (2012).

    Article 

    Google Scholar 

  • 70.

    Ayre, G. Response to movement by Formica polyctena Forst. Nature 199, 405–406 (1963).

    ADS 
    Article 

    Google Scholar 

  • 71.

    Thom, D., Seidl, R., Steyrer, G., Krehan, H. & Formayer, H. Slow and fast drivers of the natural disturbance regime in Central European forest ecosystems. For. Ecol. Manag. 307, 293–302 (2013).

    Article 

    Google Scholar 

  • 72.

    Czechowski, W. & Vepsäläinen, K. Territory size of wood ants (Hymenoptera: Formicidae): A search for limits of existence of Formica polyctena Först., an inherently polygynic and polycalic species. Ann. Zool. 59, 179–187 (2009).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    MIT-designed project achieves major advance toward fusion energy

    Historical land use has long-term effects on microbial community assembly processes in forest soils