Mohamed, W. & El-Rifai, E. An integrated approach for the documentation and virtual reconstruction of metal fragments. In Seventh World Archaeological Congress-WAC 7, Dead Sea, Jordan (2013).
Birks, H. H. Plant macrofossil introduction. Encycl. Quat. Sci. 3, 2266–2288 (2007).
van der Veen, M. In The Science of Roman History (ed. Scheidel, W.) 53–94 (Princeton University Press, 2018).
Stanley, J.-D. Submergence and burial of ancient coastal sites on the subsiding Nile delta margin, Egypt. Méditer. Rev. Géogr. Pays Méditer./J. Mediter. Geogr. 104, 65–73 (2005).
Zhao, X. et al. Holocene climate change and its influence on early agriculture in the Nile Delta, Egypt. Palaeogeogr. Palaeoclimatol. Palaeoecol. 547, 109702. https://doi.org/10.1016/j.palaeo.2020.109702 (2020).
Google Scholar
Sestini, G. Nile Delta: A review of depositional environments and geological history. Geol. Soc. Lond. Spec. Publ. 41, 99–127 (1989).
Google Scholar
Stanley, D. J. & Warne, A. G. Nile Delta: Recent geological evolution and human impact. Science 260, 628–634 (1993).
Google Scholar
Pennington, B. T., Sturt, F., Wilson, P., Rowland, J. & Brown, A. G. The fluvial evolution of the Holocene Nile Delta. Quatern. Sci. Rev. 170, 212–231. https://doi.org/10.1016/j.quascirev.2017.06.017 (2017).
Google Scholar
Björdal, C., Nilsson, T. & Daniel, G. Microbial decay of waterlogged archaeological wood found in Sweden applicable to archaeology and conservation. Int. Biodeterior. Biodegrad. 43, 63–73. https://doi.org/10.1016/S0964-8305(98)00070-5 (1999).
Google Scholar
Douterelo, I., Goulder, R. & Lillie, M. Soil microbial community response to land-management and depth, related to the degradation of organic matter in English wetlands: Implications for the in situ preservation of archaeological remains. Appl. Soil. Ecol. 44, 219–227. https://doi.org/10.1016/j.apsoil.2009.12.009 (2010).
Google Scholar
Weiss, E. & Kislev, M. E. Plant remains as a tool for reconstruction of the past environment, economy, and society: Archaeobotany in Israel. Israel J. Earth Sci. 56, 163–173 (2007).
Birks, H. J. B. Challenges in the presentation and analysis of plant-macrofossil stratigraphical data. Veg. Hist. Archaeobotany 23, 309–330 (2014).
Mauquoy, D., Hughes, P. & Van Geel, B. A protocol for plant macrofossil analysis of peat deposits. Mires Peat 7, 1–5 (2010).
Jacomet, S., Kreuz, A. & Rösch, M. Archäobotanik: Aufgaben Methoden, und Ergebnisse vegetations-und agrargeschichtlicher Forschung (Ulmer, 1999).
Jacomet, S. Plant macrofossil methods and studies: Use in environmental archaeology. In Encyclopedia of quaternary science 2384–2412 (Elsevier, Amsterdam, 2007).
Takahashi, M., Crane, P. R. & Ando, H. Fossil flowers and associated plant fossils from the Kamikitaba locality (Ashizawa Formation, Futaba Group, lower Coniacian, upper Cretaceous) of Northeast Japan. J. Plant. Res. 112, 187–206. https://doi.org/10.1007/PL00013872 (1999).
Google Scholar
Poppinga, S. et al. Hygroscopic motions of fossil conifer cones. Sci. Rep. 7, 40302. https://doi.org/10.1038/srep40302 (2017).
Google Scholar
Crepet, W. L., Nixon, K. C., Grimaldi, D. & Riccio, M. A mosaic Lauralean flower from the Early Cretaceous of Myanmar. Am. J. Bot. 103, 290–297. https://doi.org/10.3732/ajb.1500393 (2016).
Google Scholar
Feng, Z., Röβler, R., Annacker, V. & Yang, J.-Y. Micro-CT investigation of a seed fern (probable medullosan) fertile pinna from the Early Permian Petrified Forest in Chemnitz, Germany. Gondwana Res. 26, 1208–1215. https://doi.org/10.1016/j.gr.2013.08.005 (2014).
Google Scholar
Gee, C. T., Dayvault, R. D., Stockey, R. A. & Tidwell, W. D. Greater palaeobiodiversity in conifer seed cones in the Upper Jurassic Morrison Formation of Utah, USA. Palaeobiodivers. Palaeoenviron. 94, 363–375. https://doi.org/10.1007/s12549-014-0160-1 (2014).
Google Scholar
Herrera, F. et al. A new voltzian seed cone from the Early Cretaceous of Mongolia and its implications for the evolution of ancient conifers. Int. J. Plant Sci. 176, 791–809. https://doi.org/10.1086/683060 (2015).
Google Scholar
Rozefelds, A. et al. Traditional and computed tomographic (CT) techniques link modern and Cenozoic fruits of Pleiogynium (Anacardiaceae) from Australia. Alcheringa 39, 24–39. https://doi.org/10.1080/03115518.2014.951916 (2015).
Google Scholar
Su, T., Wilf, P., Huang, Y., Zhang, S. & Zhou, Z. Peaches Preceded Humans: Fossil Evidence from SW China. Sci. Rep. 5, 16794. https://doi.org/10.1038/srep16794 (2015).
Google Scholar
Nishida, H. The frontier of fossil plant studies. Gakujutu Geppou 54, 1142–1144 (2001).
Collinson, M. E. et al. X-ray micro-computed tomography (micro-CT) of pyrite-permineralized fruits and seeds from the London Clay Formation (Ypresian) conserved in silicone oil: A critical evaluation. Botany 94, 697–711. https://doi.org/10.1139/cjb-2016-0078 (2016).
Google Scholar
Dilcher, D. L. & Manchester, S. R. Investigations of angiosperms from the Eocene of North America: A fruit belonging to the Euphorbiaceae. Tertiary Res. 9, 45–58 (1987).
Koch, B. E. & Friedrich, W. L. StereoskopischeRntgen-aufnahmen von fossilenFrüchten. Bull. Geol. Soc. Denmark. 21, 358–367 (1972).
Debussche, M. & Isenmann, P. Fleshy fruit characters and the choices of bird and mammal seed dispersers in a Mediterranean region. Oikos 56, 327–338 (1989).
Esteves, C. F., Costa, J. M., Vargas, P., Freitas, H. & Heleno, R. H. On the limited potential of Azorean fleshy fruits for oceanic dispersal. PLoS ONE 10, e0138882. https://doi.org/10.1371/journal.pone.0138882 (2015).
Google Scholar
Manniche, L. Sacred Luxuries: Fragrance, Aromatherapy, and Cosmetics in Ancient Egypt (Cornell University Press, 1999).
Kendall, P. Trees for life Discover the forest, Mythology & folklore, Juniper (Iris Publisher, 2005).
Waltz, L. R. The Herbal Encyclopedia: A Practical Guide to the Many Uses of Herbs (iUniverse, 2004).
Tunon, H., Olavsdotter, C. & Bohlin, L. Evaluation of anti-inflammatory activity of some Swedish medicinal plants. Inhibition of prostaglandin biosynthesis and PAF-induced exocytosis. J. Ethnopharmacol. 48, 61–76 (1995).
Google Scholar
Modnicki, D. & Łabędzka, J. Estimation of the total phenolic compounds in juniper sprouts (Juniperus communis, Cupressaceae) from different places at the kujawsko-pomorskie province. Herba Pol. 55, 127–132 (2009).
Google Scholar
Longe, J. L. The Gale Encyclopedia of Alternative Medicine Vol. 3 (Thomson Gale ((Thomson Gale, A Part of The Thomson Corporation), London, 2005).
Wurges, J. Juniper. In The Gale Encyclopedia of Alternative Medicine (ed. Longe, J. L.) (Thomson/Gale, 2005).
Larson, E. Dangerous Tastes: The Story of Spices. Northeast. Nat. 9, 124 (2002).
Dalby, A. Dangerous Tastes: The Story of Spices (University of California Press, 2000).
Lorman, J. Greek Life 76–77 (Gregory House, 1997).
El-Bana, M., Shaltout, K., Khalafallah, A. & Mosallam, H. Ecological status of the Mediterranean Juniperus phoenicea L. relicts in the desert mountains of North Sinai, Egypt. Flora 205, 171–178. https://doi.org/10.1016/j.flora.2009.04.004 (2010).
Google Scholar
Moustafa, A. et al. Ecological Prominence of Juniperus phoenicea L. growing in Gebel Halal, North Sinai, Egypt. Catrina 15, 11–23 (2016).
Dalby, A. Siren Feasts: A History of Food and Gastronomy in Greece (Routledge, 1997).
Klimko, M. et al. Morphological variation of Juniperus oxycedrus subsp. oxycedrus (Cupressaceae) in the Mediterranean region. Flora 202, 133–147. https://doi.org/10.1016/j.flora.2006.03.006 (2007).
Google Scholar
Farjon, A. A Monograph of Cupressaceae and Sciadopitys (Royal Botanic Gardens, 2005).
Farjon, A. A Handbook of the World’s Conifers (2 vols.) Vol. 1 (Brill, 2010).
Avci, M. & Zielinski, J. Juniperus oxycedrus f. yaltirikiana (Cupressaceae): A new form from NW Turkey. Phytol. Balcanica 14, 37–40 (2008).
Browicz, K. & Ielioski, J. Chorology of Trees and Shrubs in Southwest Asia and Adjacent Regions (PWN, 1984).
Adams, R. P. Junipers of the World: The Genus Juniperus (Trafford Publishing, 2014).
Liphschitz, N., Waisel, Y. & Lev-Yadun, S. Dendrochronological investigations in Iran. Tree-Ring. Bull. 39, 39–45 (1979).
Douaihy, B. et al. Morphological versus molecular markers to describe variability in Juniperus excelsa subsp. excelsa (Cupressaceae). AoB Plants https://doi.org/10.1093/aobpla/pls013 (2012).
Google Scholar
Khajjak, M. H. et al. Seed and cone biometry of Juniperus excelsa from three Provenances in Balochistan. Int. J. Biosci. 10, 345–355. https://doi.org/10.12692/ijb/10.1.345-355 (2017).
Google Scholar
Klimko, M. et al. Morphological variation of Juniperus oxycedrus subsp oxycedrus (Cupressaceae) in the Mediterranean region. Flora 202, 133–147. https://doi.org/10.1016/j.flora.2006.03.006 (2007).
Google Scholar
Schulz, C., Jagel, A. & Stützel, T. Cone morphology in Juniperus in the light of cone evolution in Cupressaceae s.l. Flora 198, 161–177. https://doi.org/10.1078/0367-2530-00088 (2003).
Google Scholar
Arista, M., Ortiz, P. L. & Talavera, S. Reproductive cycles of two allopatric subspecies of Juniperus oxycedrus (Cupressaceae). Flora 196, 114–120. https://doi.org/10.1016/S0367-2530(17)30026-9 (2001).
Google Scholar
Juan, R., Pastor, J., Fernández, I. & Diosdado, J. C. Relationships between mature cone traits and seed viability in Juniperus oxycedrus L. subsp macrocarpa (Sm.) Ball (Cupressaceae). Acta Biol. Cracov. Bot 45, 69–78 (2003).
Ward, L. & Shellswell, C. Looking After Juniper, Ecology, Conservation and Folklore (Plantlife Press, 2017).
García, D., Zamora, R., Gómez, J. M., Jordano, P. & Hódar, J. A. Geographical variation in seed production, predation and abortion in Juniperus communis throughout its range in Europe. J. Ecol. 88, 435–446. https://doi.org/10.1046/j.1365-2745.2000.00459.x (2000).
Google Scholar
Grzeskowiak, M. & Bednorz, L. Zmiennosc morfologiczna szyszkojagod jalowca pospolitego Juniperus communis L. subsp. communis w Nadlesnictwie Kaliska [Bory Tucholskie]. Roczniki Akademii Rolniczej w Poznaniu. Botanika 5, 71–78 (2002).
Shahi, A., Movafeghi, A., Hekmat-Shoar, H., Neishabouri, A. & Iranipour, S. Demographic study of Juniperus communis L. on Mishu-Dagh altitudes in North West of Iran. Asian J. Plant Sci. 6, 1080–1087. https://doi.org/10.3923/ajps.2007.1080.1087 (2007).
Google Scholar
Thomas, P. A., El-Barghathi, M. & Polwart, A. Biological flora of the British Isles: Juniperus communis L. J. Ecol. 95, 1404–1440. https://doi.org/10.1111/j.1365-2745.2007.01308.x (2007).
Google Scholar
McCartan, S. A. & Gosling, P. G. Guidelines for seed collection and stratification of common juniper (Juniperus communis L.). Tree Plant. Notes 56, 24–29 (2013).
García, D., Zamora, R., Gómez, J. M. & Hódar, J. A. Annual variability in reproduction of Juniperus communis L. in a Mediterranean mountain: Relationship to seed predation and weather. Écoscience 9, 251–255. https://doi.org/10.1080/11956860.2002.11682711 (2002).
Google Scholar
Raatikainen, N. & Tanska, T. Cone and seed yields of the juniper (Juniperus communis) in southern and central Finland. Acta Bot. Fenn. 149, 27–39 (1993).
McCartan, S., Gosling, P. G. & Ives, L. Seed fill determination in common juniper (Juniperus communis L.). In Procdings of IUFRO Tree Seed Symposium, Recent Advances in Seed Physiology and Technology (eds Beardmore, T. L. & Simpson, J. D.) 65 (Fredricton, 2007).
McCartan, S. & Gosling, P. G. Exposed! Predicting filled and empty seeds in juniper with x-radiographs. Ecotype 38, 7 (2007).
Pers-Kamczyc, E., Tyrała-Wierucka, Ż, Rabska, M., Wrońska-Pilarek, D. & Kamczyc, J. The higher availability of nutrients increases the production but decreases the quality of pollen grains in Juniperus communis L. J. Plant Physiol. 248, 153156. https://doi.org/10.1016/j.jplph.2020.153156 (2020).
Google Scholar
Verheyen, K. et al. Juniperus communis: Victim of the combined action of climate warming and nitrogen deposition?. Plant Biol. 11, 49–59. https://doi.org/10.1111/j.1438-8677.2009.00214.x (2009).
Google Scholar
Kormuťák, A., Bolecek, P., Galgóci, M. & Gömöry, D. Longevity and germination of Juniperus communis L. pollen after storage. Sci. Rep. 11, 12755. https://doi.org/10.1038/s41598-021-90942-9 (2021).
Google Scholar
Yahaya, N., Lim, K. S., Noor, N. M., Othman, S. R. & Abdullah, A. Effects of clay and moisture content on soil-corrosion dynamic. Malays. J. Civ. Eng. 23, 24–32. https://doi.org/10.11113/mjce.v23.15809 (2011).
Google Scholar
Scott, D. A. (2002).
Selwyn, L. S. ASM Handbook Volume 13C. Corrosion: Environments and Industries 306–322 (ASM International, 2006).
Ingo, G. M. et al. Large scale investigation of chemical composition, structure and corrosion mechanism of bronze archeological artefacts from Mediterranean basin. Appl. Phys. A 83, 513–520. https://doi.org/10.1007/s00339-006-3550-z (2006).
Google Scholar
Papadopoulou, O., Vassiliou, P., Grassini, S., Angelini, E. & Gouda, V. Soil-induced corrosion of ancient Roman brass: A case study. Mater. Corros. 67, 160–169. https://doi.org/10.1002/maco.201408115 (2016).
Google Scholar
Robbiola, L. & Portier, R. A global approach to the authentication of ancient bronzes based on the characterization of the alloy–patina–environment system. J. Cult. Herit. 7, 1–12. https://doi.org/10.1016/j.culher.2005.11.001 (2006).
Google Scholar
Vuai, S. A., Nakamura, K. & Tokuyama, A. Geochemical characteristics of runoff from acid sulfate soils in the northern area of Okinawa Island, Japan. Geochem. J. 37, 579–592 (2003).
Google Scholar
Marani, D., Patterson, J. W. & Anderson, P. R. Alkaline precipitation and aging of Cu(II) in the presence of sulfate. Water Res. 29, 1317–1326. https://doi.org/10.1016/0043-1354(94)00286-G (1995).
Google Scholar
Baboian, R. Corrosion Tests and Standards: Application and Interpretation Vol. 20 (ASTM International, 2005).
Strandberg, H. Reactions of copper patina compounds—II. Influence of sodium chloride in the presence of some air pollutants. Atmos. Environ. 32, 3521–3526. https://doi.org/10.1016/S1352-2310(98)00058-2 (1998).
Google Scholar
Borkow, G. & Gabbay, J. Copper, an ancient remedy returning to fight microbial, fungal and viral infections. Curr. Chem. Biol. 3, 272–278 (2009).
Google Scholar
Dollwet, H. Historic uses of copper compounds in medicine. Trace Elem. Med. 2, 80–87 (1985).
Milanino, R. Copper in medicine and personal care: A historical overview. In Copper and the Skin 149–160 (Informa Healthcare, 2006).
Robinson, M. Environmental archaeology: Approaches, techniques & applications. Antiquity 79, 229–230 (2005).
Milanesi, C. et al. Ultrastructural study of archaeological Vitis vinifera L. seeds using rapid-freeze fixation and substitution. Tissue Cell 41, 443–447. https://doi.org/10.1016/j.tice.2009.03.002 (2009).
Google Scholar
Akahane, H., Furuno, T., Miyajima, H., Yoshikawa, T. & Yamamoto, S. Rapid wood silicification in hot spring water: An explanation of silicification of wood during the Earth’s history. Sed. Geol. 169, 219–228. https://doi.org/10.1016/j.sedgeo.2004.06.003 (2004).
Google Scholar
Leo, R. F. & Barghoorn, E. S. Silicification of wood. Bot. Mus. Leafl. Harv. Univ. 25, 1–47 (1976).
Google Scholar
Hellawell, J. et al. Incipient silicification of recent conifer wood at a Yellowstone hot spring. Geochim. Cosmochim. Acta 149, 79–87. https://doi.org/10.1016/j.gca.2014.10.018 (2015).
Google Scholar
Source: Ecology - nature.com