in

X-ray computed tomography (CT) and ESEM-EDS investigations of unusual subfossilized juniper cones

[adace-ad id="91168"]
  • 1.

    Mohamed, W. & El-Rifai, E. An integrated approach for the documentation and virtual reconstruction of metal fragments. In Seventh World Archaeological Congress-WAC 7, Dead Sea, Jordan (2013).

  • 2.

    Birks, H. H. Plant macrofossil introduction. Encycl. Quat. Sci. 3, 2266–2288 (2007).

    Google Scholar 

  • 3.

    van der Veen, M. In The Science of Roman History (ed. Scheidel, W.) 53–94 (Princeton University Press, 2018).

    Google Scholar 

  • 4.

    Stanley, J.-D. Submergence and burial of ancient coastal sites on the subsiding Nile delta margin, Egypt. Méditer. Rev. Géogr. Pays Méditer./J. Mediter. Geogr. 104, 65–73 (2005).

    Google Scholar 

  • 5.

    Zhao, X. et al. Holocene climate change and its influence on early agriculture in the Nile Delta, Egypt. Palaeogeogr. Palaeoclimatol. Palaeoecol. 547, 109702. https://doi.org/10.1016/j.palaeo.2020.109702 (2020).

    Article 

    Google Scholar 

  • 6.

    Sestini, G. Nile Delta: A review of depositional environments and geological history. Geol. Soc. Lond. Spec. Publ. 41, 99–127 (1989).

    ADS 

    Google Scholar 

  • 7.

    Stanley, D. J. & Warne, A. G. Nile Delta: Recent geological evolution and human impact. Science 260, 628–634 (1993).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 8.

    Pennington, B. T., Sturt, F., Wilson, P., Rowland, J. & Brown, A. G. The fluvial evolution of the Holocene Nile Delta. Quatern. Sci. Rev. 170, 212–231. https://doi.org/10.1016/j.quascirev.2017.06.017 (2017).

    ADS 
    Article 

    Google Scholar 

  • 9.

    Björdal, C., Nilsson, T. & Daniel, G. Microbial decay of waterlogged archaeological wood found in Sweden applicable to archaeology and conservation. Int. Biodeterior. Biodegrad. 43, 63–73. https://doi.org/10.1016/S0964-8305(98)00070-5 (1999).

    Article 

    Google Scholar 

  • 10.

    Douterelo, I., Goulder, R. & Lillie, M. Soil microbial community response to land-management and depth, related to the degradation of organic matter in English wetlands: Implications for the in situ preservation of archaeological remains. Appl. Soil. Ecol. 44, 219–227. https://doi.org/10.1016/j.apsoil.2009.12.009 (2010).

    Article 

    Google Scholar 

  • 11.

    Weiss, E. & Kislev, M. E. Plant remains as a tool for reconstruction of the past environment, economy, and society: Archaeobotany in Israel. Israel J. Earth Sci. 56, 163–173 (2007).

    Google Scholar 

  • 12.

    Birks, H. J. B. Challenges in the presentation and analysis of plant-macrofossil stratigraphical data. Veg. Hist. Archaeobotany 23, 309–330 (2014).

    Google Scholar 

  • 13.

    Mauquoy, D., Hughes, P. & Van Geel, B. A protocol for plant macrofossil analysis of peat deposits. Mires Peat 7, 1–5 (2010).

    Google Scholar 

  • 14.

    Jacomet, S., Kreuz, A. & Rösch, M. Archäobotanik: Aufgaben Methoden, und Ergebnisse vegetations-und agrargeschichtlicher Forschung (Ulmer, 1999).

    Google Scholar 

  • 15.

    Jacomet, S. Plant macrofossil methods and studies: Use in environmental archaeology. In Encyclopedia of quaternary science 2384–2412 (Elsevier, Amsterdam, 2007).

    Google Scholar 

  • 16.

    Takahashi, M., Crane, P. R. & Ando, H. Fossil flowers and associated plant fossils from the Kamikitaba locality (Ashizawa Formation, Futaba Group, lower Coniacian, upper Cretaceous) of Northeast Japan. J. Plant. Res. 112, 187–206. https://doi.org/10.1007/PL00013872 (1999).

    Article 

    Google Scholar 

  • 17.

    Poppinga, S. et al. Hygroscopic motions of fossil conifer cones. Sci. Rep. 7, 40302. https://doi.org/10.1038/srep40302 (2017).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 18.

    Crepet, W. L., Nixon, K. C., Grimaldi, D. & Riccio, M. A mosaic Lauralean flower from the Early Cretaceous of Myanmar. Am. J. Bot. 103, 290–297. https://doi.org/10.3732/ajb.1500393 (2016).

    Article 
    PubMed 

    Google Scholar 

  • 19.

    Feng, Z., Röβler, R., Annacker, V. & Yang, J.-Y. Micro-CT investigation of a seed fern (probable medullosan) fertile pinna from the Early Permian Petrified Forest in Chemnitz, Germany. Gondwana Res. 26, 1208–1215. https://doi.org/10.1016/j.gr.2013.08.005 (2014).

    ADS 
    Article 

    Google Scholar 

  • 20.

    Gee, C. T., Dayvault, R. D., Stockey, R. A. & Tidwell, W. D. Greater palaeobiodiversity in conifer seed cones in the Upper Jurassic Morrison Formation of Utah, USA. Palaeobiodivers. Palaeoenviron. 94, 363–375. https://doi.org/10.1007/s12549-014-0160-1 (2014).

    Article 

    Google Scholar 

  • 21.

    Herrera, F. et al. A new voltzian seed cone from the Early Cretaceous of Mongolia and its implications for the evolution of ancient conifers. Int. J. Plant Sci. 176, 791–809. https://doi.org/10.1086/683060 (2015).

    Article 

    Google Scholar 

  • 22.

    Rozefelds, A. et al. Traditional and computed tomographic (CT) techniques link modern and Cenozoic fruits of Pleiogynium (Anacardiaceae) from Australia. Alcheringa 39, 24–39. https://doi.org/10.1080/03115518.2014.951916 (2015).

    Article 

    Google Scholar 

  • 23.

    Su, T., Wilf, P., Huang, Y., Zhang, S. & Zhou, Z. Peaches Preceded Humans: Fossil Evidence from SW China. Sci. Rep. 5, 16794. https://doi.org/10.1038/srep16794 (2015).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Nishida, H. The frontier of fossil plant studies. Gakujutu Geppou 54, 1142–1144 (2001).

    Google Scholar 

  • 25.

    Collinson, M. E. et al. X-ray micro-computed tomography (micro-CT) of pyrite-permineralized fruits and seeds from the London Clay Formation (Ypresian) conserved in silicone oil: A critical evaluation. Botany 94, 697–711. https://doi.org/10.1139/cjb-2016-0078 (2016).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Dilcher, D. L. & Manchester, S. R. Investigations of angiosperms from the Eocene of North America: A fruit belonging to the Euphorbiaceae. Tertiary Res. 9, 45–58 (1987).

    Google Scholar 

  • 27.

    Koch, B. E. & Friedrich, W. L. StereoskopischeRntgen-aufnahmen von fossilenFrüchten. Bull. Geol. Soc. Denmark. 21, 358–367 (1972).

    Google Scholar 

  • 28.

    Debussche, M. & Isenmann, P. Fleshy fruit characters and the choices of bird and mammal seed dispersers in a Mediterranean region. Oikos 56, 327–338 (1989).

    Google Scholar 

  • 29.

    Esteves, C. F., Costa, J. M., Vargas, P., Freitas, H. & Heleno, R. H. On the limited potential of Azorean fleshy fruits for oceanic dispersal. PLoS ONE 10, e0138882. https://doi.org/10.1371/journal.pone.0138882 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    Manniche, L. Sacred Luxuries: Fragrance, Aromatherapy, and Cosmetics in Ancient Egypt (Cornell University Press, 1999).

    Google Scholar 

  • 31.

    Kendall, P. Trees for life Discover the forest, Mythology & folklore, Juniper (Iris Publisher, 2005).

    Google Scholar 

  • 32.

    Waltz, L. R. The Herbal Encyclopedia: A Practical Guide to the Many Uses of Herbs (iUniverse, 2004).

    Google Scholar 

  • 33.

    Tunon, H., Olavsdotter, C. & Bohlin, L. Evaluation of anti-inflammatory activity of some Swedish medicinal plants. Inhibition of prostaglandin biosynthesis and PAF-induced exocytosis. J. Ethnopharmacol. 48, 61–76 (1995).

    CAS 
    PubMed 

    Google Scholar 

  • 34.

    Modnicki, D. & Łabędzka, J. Estimation of the total phenolic compounds in juniper sprouts (Juniperus communis, Cupressaceae) from different places at the kujawsko-pomorskie province. Herba Pol. 55, 127–132 (2009).

    CAS 

    Google Scholar 

  • 35.

    Longe, J. L. The Gale Encyclopedia of Alternative Medicine Vol. 3 (Thomson Gale ((Thomson Gale, A Part of The Thomson Corporation), London, 2005).

    Google Scholar 

  • 36.

    Wurges, J. Juniper. In The Gale Encyclopedia of Alternative Medicine (ed. Longe, J. L.) (Thomson/Gale, 2005).

    Google Scholar 

  • 37.

    Larson, E. Dangerous Tastes: The Story of Spices. Northeast. Nat. 9, 124 (2002).

    Google Scholar 

  • 38.

    Dalby, A. Dangerous Tastes: The Story of Spices (University of California Press, 2000).

    Google Scholar 

  • 39.

    Lorman, J. Greek Life 76–77 (Gregory House, 1997).

    Google Scholar 

  • 40.

    El-Bana, M., Shaltout, K., Khalafallah, A. & Mosallam, H. Ecological status of the Mediterranean Juniperus phoenicea L. relicts in the desert mountains of North Sinai, Egypt. Flora 205, 171–178. https://doi.org/10.1016/j.flora.2009.04.004 (2010).

    Article 

    Google Scholar 

  • 41.

    Moustafa, A. et al. Ecological Prominence of Juniperus phoenicea L. growing in Gebel Halal, North Sinai, Egypt. Catrina 15, 11–23 (2016).

    Google Scholar 

  • 42.

    Dalby, A. Siren Feasts: A History of Food and Gastronomy in Greece (Routledge, 1997).

    Google Scholar 

  • 43.

    Klimko, M. et al. Morphological variation of Juniperus oxycedrus subsp. oxycedrus (Cupressaceae) in the Mediterranean region. Flora 202, 133–147. https://doi.org/10.1016/j.flora.2006.03.006 (2007).

    Article 

    Google Scholar 

  • 44.

    Farjon, A. A Monograph of Cupressaceae and Sciadopitys (Royal Botanic Gardens, 2005).

    Google Scholar 

  • 45.

    Farjon, A. A Handbook of the World’s Conifers (2 vols.) Vol. 1 (Brill, 2010).

    Google Scholar 

  • 46.

    Avci, M. & Zielinski, J. Juniperus oxycedrus f. yaltirikiana (Cupressaceae): A new form from NW Turkey. Phytol. Balcanica 14, 37–40 (2008).

    Google Scholar 

  • 47.

    Browicz, K. & Ielioski, J. Chorology of Trees and Shrubs in Southwest Asia and Adjacent Regions (PWN, 1984).

    Google Scholar 

  • 48.

    Adams, R. P. Junipers of the World: The Genus Juniperus (Trafford Publishing, 2014).

    Google Scholar 

  • 49.

    Liphschitz, N., Waisel, Y. & Lev-Yadun, S. Dendrochronological investigations in Iran. Tree-Ring. Bull. 39, 39–45 (1979).

    Google Scholar 

  • 50.

    Douaihy, B. et al. Morphological versus molecular markers to describe variability in Juniperus excelsa subsp. excelsa (Cupressaceae). AoB Plants https://doi.org/10.1093/aobpla/pls013 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Khajjak, M. H. et al. Seed and cone biometry of Juniperus excelsa from three Provenances in Balochistan. Int. J. Biosci. 10, 345–355. https://doi.org/10.12692/ijb/10.1.345-355 (2017).

    Article 

    Google Scholar 

  • 52.

    Klimko, M. et al. Morphological variation of Juniperus oxycedrus subsp oxycedrus (Cupressaceae) in the Mediterranean region. Flora 202, 133–147. https://doi.org/10.1016/j.flora.2006.03.006 (2007).

    Article 

    Google Scholar 

  • 53.

    Schulz, C., Jagel, A. & Stützel, T. Cone morphology in Juniperus in the light of cone evolution in Cupressaceae s.l. Flora 198, 161–177. https://doi.org/10.1078/0367-2530-00088 (2003).

    Article 

    Google Scholar 

  • 54.

    Arista, M., Ortiz, P. L. & Talavera, S. Reproductive cycles of two allopatric subspecies of Juniperus oxycedrus (Cupressaceae). Flora 196, 114–120. https://doi.org/10.1016/S0367-2530(17)30026-9 (2001).

    Article 

    Google Scholar 

  • 55.

    Juan, R., Pastor, J., Fernández, I. & Diosdado, J. C. Relationships between mature cone traits and seed viability in Juniperus oxycedrus L. subsp macrocarpa (Sm.) Ball (Cupressaceae). Acta Biol. Cracov. Bot 45, 69–78 (2003).

    Google Scholar 

  • 56.

    Ward, L. & Shellswell, C. Looking After Juniper, Ecology, Conservation and Folklore (Plantlife Press, 2017).

    Google Scholar 

  • 57.

    García, D., Zamora, R., Gómez, J. M., Jordano, P. & Hódar, J. A. Geographical variation in seed production, predation and abortion in Juniperus communis throughout its range in Europe. J. Ecol. 88, 435–446. https://doi.org/10.1046/j.1365-2745.2000.00459.x (2000).

    Article 

    Google Scholar 

  • 58.

    Grzeskowiak, M. & Bednorz, L. Zmiennosc morfologiczna szyszkojagod jalowca pospolitego Juniperus communis L. subsp. communis w Nadlesnictwie Kaliska [Bory Tucholskie]. Roczniki Akademii Rolniczej w Poznaniu. Botanika 5, 71–78 (2002).

    Google Scholar 

  • 59.

    Shahi, A., Movafeghi, A., Hekmat-Shoar, H., Neishabouri, A. & Iranipour, S. Demographic study of Juniperus communis L. on Mishu-Dagh altitudes in North West of Iran. Asian J. Plant Sci. 6, 1080–1087. https://doi.org/10.3923/ajps.2007.1080.1087 (2007).

    Article 

    Google Scholar 

  • 60.

    Thomas, P. A., El-Barghathi, M. & Polwart, A. Biological flora of the British Isles: Juniperus communis L. J. Ecol. 95, 1404–1440. https://doi.org/10.1111/j.1365-2745.2007.01308.x (2007).

    Article 

    Google Scholar 

  • 61.

    McCartan, S. A. & Gosling, P. G. Guidelines for seed collection and stratification of common juniper (Juniperus communis L.). Tree Plant. Notes 56, 24–29 (2013).

    Google Scholar 

  • 62.

    García, D., Zamora, R., Gómez, J. M. & Hódar, J. A. Annual variability in reproduction of Juniperus communis L. in a Mediterranean mountain: Relationship to seed predation and weather. Écoscience 9, 251–255. https://doi.org/10.1080/11956860.2002.11682711 (2002).

    Article 

    Google Scholar 

  • 63.

    Raatikainen, N. & Tanska, T. Cone and seed yields of the juniper (Juniperus communis) in southern and central Finland. Acta Bot. Fenn. 149, 27–39 (1993).

    Google Scholar 

  • 64.

    McCartan, S., Gosling, P. G. & Ives, L. Seed fill determination in common juniper (Juniperus communis L.). In Procdings of IUFRO Tree Seed Symposium, Recent Advances in Seed Physiology and Technology (eds Beardmore, T. L. & Simpson, J. D.) 65 (Fredricton, 2007).

    Google Scholar 

  • 65.

    McCartan, S. & Gosling, P. G. Exposed! Predicting filled and empty seeds in juniper with x-radiographs. Ecotype 38, 7 (2007).

    Google Scholar 

  • 66.

    Pers-Kamczyc, E., Tyrała-Wierucka, Ż, Rabska, M., Wrońska-Pilarek, D. & Kamczyc, J. The higher availability of nutrients increases the production but decreases the quality of pollen grains in Juniperus communis L. J. Plant Physiol. 248, 153156. https://doi.org/10.1016/j.jplph.2020.153156 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 67.

    Verheyen, K. et al. Juniperus communis: Victim of the combined action of climate warming and nitrogen deposition?. Plant Biol. 11, 49–59. https://doi.org/10.1111/j.1438-8677.2009.00214.x (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 68.

    Kormuťák, A., Bolecek, P., Galgóci, M. & Gömöry, D. Longevity and germination of Juniperus communis L. pollen after storage. Sci. Rep. 11, 12755. https://doi.org/10.1038/s41598-021-90942-9 (2021).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 69.

    Yahaya, N., Lim, K. S., Noor, N. M., Othman, S. R. & Abdullah, A. Effects of clay and moisture content on soil-corrosion dynamic. Malays. J. Civ. Eng. 23, 24–32. https://doi.org/10.11113/mjce.v23.15809 (2011).

    Article 

    Google Scholar 

  • 70.

    Scott, D. A. (2002).

  • 71.

    Selwyn, L. S. ASM Handbook Volume 13C. Corrosion: Environments and Industries 306–322 (ASM International, 2006).

    Google Scholar 

  • 72.

    Ingo, G. M. et al. Large scale investigation of chemical composition, structure and corrosion mechanism of bronze archeological artefacts from Mediterranean basin. Appl. Phys. A 83, 513–520. https://doi.org/10.1007/s00339-006-3550-z (2006).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 73.

    Papadopoulou, O., Vassiliou, P., Grassini, S., Angelini, E. & Gouda, V. Soil-induced corrosion of ancient Roman brass: A case study. Mater. Corros. 67, 160–169. https://doi.org/10.1002/maco.201408115 (2016).

    CAS 
    Article 

    Google Scholar 

  • 74.

    Robbiola, L. & Portier, R. A global approach to the authentication of ancient bronzes based on the characterization of the alloy–patina–environment system. J. Cult. Herit. 7, 1–12. https://doi.org/10.1016/j.culher.2005.11.001 (2006).

    Article 

    Google Scholar 

  • 75.

    Vuai, S. A., Nakamura, K. & Tokuyama, A. Geochemical characteristics of runoff from acid sulfate soils in the northern area of Okinawa Island, Japan. Geochem. J. 37, 579–592 (2003).

    ADS 
    CAS 

    Google Scholar 

  • 76.

    Marani, D., Patterson, J. W. & Anderson, P. R. Alkaline precipitation and aging of Cu(II) in the presence of sulfate. Water Res. 29, 1317–1326. https://doi.org/10.1016/0043-1354(94)00286-G (1995).

    CAS 
    Article 

    Google Scholar 

  • 77.

    Baboian, R. Corrosion Tests and Standards: Application and Interpretation Vol. 20 (ASTM International, 2005).

    Google Scholar 

  • 78.

    Strandberg, H. Reactions of copper patina compounds—II. Influence of sodium chloride in the presence of some air pollutants. Atmos. Environ. 32, 3521–3526. https://doi.org/10.1016/S1352-2310(98)00058-2 (1998).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 79.

    Borkow, G. & Gabbay, J. Copper, an ancient remedy returning to fight microbial, fungal and viral infections. Curr. Chem. Biol. 3, 272–278 (2009).

    CAS 

    Google Scholar 

  • 80.

    Dollwet, H. Historic uses of copper compounds in medicine. Trace Elem. Med. 2, 80–87 (1985).

    Google Scholar 

  • 81.

    Milanino, R. Copper in medicine and personal care: A historical overview. In Copper and the Skin 149–160 (Informa Healthcare, 2006).

    Google Scholar 

  • 82.

    Robinson, M. Environmental archaeology: Approaches, techniques & applications. Antiquity 79, 229–230 (2005).

    Google Scholar 

  • 83.

    Milanesi, C. et al. Ultrastructural study of archaeological Vitis vinifera L. seeds using rapid-freeze fixation and substitution. Tissue Cell 41, 443–447. https://doi.org/10.1016/j.tice.2009.03.002 (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 84.

    Akahane, H., Furuno, T., Miyajima, H., Yoshikawa, T. & Yamamoto, S. Rapid wood silicification in hot spring water: An explanation of silicification of wood during the Earth’s history. Sed. Geol. 169, 219–228. https://doi.org/10.1016/j.sedgeo.2004.06.003 (2004).

    CAS 
    Article 

    Google Scholar 

  • 85.

    Leo, R. F. & Barghoorn, E. S. Silicification of wood. Bot. Mus. Leafl. Harv. Univ. 25, 1–47 (1976).

    CAS 

    Google Scholar 

  • 86.

    Hellawell, J. et al. Incipient silicification of recent conifer wood at a Yellowstone hot spring. Geochim. Cosmochim. Acta 149, 79–87. https://doi.org/10.1016/j.gca.2014.10.018 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Compendium of 530 metagenome-assembled bacterial and archaeal genomes from the polar Arctic Ocean

    Field metabolic rates of giant pandas reveal energetic adaptations