in

Zinc isotopes from archaeological bones provide reliable tropic level information for marine mammals

  • 1.

    Horstmann‐Dehn, L., Follmann, E. H., Rosa, C., Zelensky, G. & George, C. Stable carbon and nitrogen isotope ratios in muscle and epidermis of arctic whales. Mar. Mamm. Sci. 28, E173–E190 (2012).

    Article 

    Google Scholar 

  • 2.

    Winder, M. & Schindler, D. E. Climate change uncouples trophic interactions in an aquatic ecosystem. Ecology 85, 2100–2106 (2004).

    Article 

    Google Scholar 

  • 3.

    Misarti, N., Finney, B. P., Maschner, H. & Wooller, M. J. Changes in northeast Pacific marine ecosystems over the last 4500 years: evidence from stable isotope analysis of bone collagen from archaeological middens. Holocene 19, 1139–1151 (2009).

    Article 

    Google Scholar 

  • 4.

    Szpak, P., Buckley, M., Darwent, C. M. & Richards, M. P. Long-term ecological changes in marine mammals driven by recent warming in northwestern Alaska. Glob. Chang. Biol. 24, 490–503 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 5.

    Michener, R. H. & Kaufman, L. in Stable Isotopes in Ecology and Environmental Science (eds Michener, R. & Lajtha, K.), 238–282 (Oxford, 2007).

  • 6.

    Dunton, K. H., Saupe, S. M., Golikov, A. N., Schell, D. M. & Schonberg, S. V. Trophic relationships and isotopic gradients among arctic and subarctic marine fauna. Mar. Ecol. Prog. Ser. 56, 89–97 (1989).

    Article 

    Google Scholar 

  • 7.

    Ramsay, M. A. & Hobson, K. A. Polar bears make little use of terrestrial food webs: evidence from stable-carbon isotope analysis. Oecologia 86, 598–600 (1991).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 8.

    Hobson, K. A. & Welch, H. E. Determination of trophic relationships within a high Arctic marine food web using δ13C and δ15N analysis. Mar. Ecol. Prog. Ser. 84, 9–18 (1992).

    Article 
    CAS 

    Google Scholar 

  • 9.

    Evershed, R. P. et al. in Stable Isotopes in Ecology and Environmental Science (eds Michener, R. & Lajtha, K.) 480–540 (Oxford, 2007).

  • 10.

    Jaouen, K. et al. Exceptionally high δ15N values in collagen single amino acids confirm Neandertals as high-trophic level carnivores. Proc. Natl Acad. Sci. USA 116, 4928–4933 (2019).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 11.

    Heuser, A., Tütken, T., Gussone, N. & Galer, S. J. Calcium isotopes in fossil bones and teeth − Diagenetic versus biogenic origin. Geochim. Cosmochim. Acta 75, 3419–3433 (2011).

    Article 
    CAS 

    Google Scholar 

  • 12.

    Martin, J. E., Vance, D. & Balter, V. Natural variation of magnesium isotopes in mammal bones and teeth from two South African trophic chains. Geochim. Cosmochim. Acta 130, 12–20 (2014).

    Article 
    CAS 

    Google Scholar 

  • 13.

    Jaouen, K., Beasley, M., Schoeninger, M., Hublin, J. J. & Richards, M. P. Zinc isotope ratios of bones and teeth as new dietary indicators: results from a modern food web (Koobi Fora, Kenya). Sci. Rep. 6, 26281 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 14.

    Martin, J. E., Tacail, T., Adnet, S., Girard, C. & Balter, V. Calcium isotopes reveal the trophic position of extant and fossil elasmobranchs. Chem. Geol. 415, 118–125 (2015).

    Article 
    CAS 

    Google Scholar 

  • 15.

    Jaouen, K., Szpak, P. & Richards, M. P. Zinc isotope ratios as indicators of diet and trophic level in arctic marine mammals. PLoS ONE 11, e0152299 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 16.

    Bourgon, N. et al. Zinc isotopes in Late Pleistocene fossil teeth from a Southeast Asian cave setting preserve paleodietary information. Proc. Natl Acad. Sci. USA 117, 4675–4681 (2020).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 17.

    Jaouen, K. What is our toolbox of analytical chemistry for exploring ancient hominin diets in the absence of organic preservation? Quat. Sci. Rev. 197, 307–318 (2018).

    Article 

    Google Scholar 

  • 18.

    Minagawa, M. & Wada, E. Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age. Geochim. Cosmochim. Acta 48, 1135–1140 (1984).

    Article 
    CAS 

    Google Scholar 

  • 19.

    Vander Zanden, M. J. & Rasmussen, J. B. Variation in δ15N and δ13C trophic fractionation: implications for aquatic food web studies. Limnol. Oceanogr. 46, 2061–2066 (2001).

    Article 

    Google Scholar 

  • 20.

    Post, D. M. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83, 703–718 (2002).

    Article 

    Google Scholar 

  • 21.

    Moynier, F., Fujii, T., Shaw, A. S. & Le Borgne, M. Heterogeneous distribution of natural zinc isotopes in mice. Metallomics 5, 693–699 (2013).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 22.

    Balter, V. et al. Contrasting Cu, Fe, and Zn isotopic patterns in organs and body fluids of mice and sheep, with emphasis on cellular fractionation. Metallomics 5, 1470–1482 (2013).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 23.

    Mahan, B., Moynier, F., Jørgensen, A. L., Habekost, M. & Siebert, J. Examining the homeostatic distribution of metals and Zn isotopes in Göttingen minipigs. Metallomics 10, 1264–1281 (2018).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 24.

    Jaouen, K. et al. Dynamic homeostasis modeling of Zn isotope ratios in the human body. Metallomics 11, 1049–1059 (2019).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 25.

    Jaouen, K. et al. Zinc isotope variations in archeological human teeth (Lapa do Santo, Brazil) reveal dietary transitions in childhood and no contamination from gloves. PLoS ONE 15, e0232379 (2020).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 26.

    McMahon, K. W., Hamady, L. L. & Thorrold, S. R. Ocean ecogeochemistry: a review. Oceanogr. Mar. Biol. 51, 327–374 (2013).

    Google Scholar 

  • 27.

    Rau, G. H., Sweeney, R. E. & Kaplan, I. R. Plankton 13C:12C ratio changes with latitude: differences between northern and southern oceans. Deep Sea Res. Part I Oceanogr. Res. 29, 1035–1039 (1982).

    Article 
    CAS 

    Google Scholar 

  • 28.

    McMahon, K. W., Hamady, L. L. & Thorrold, S. R. A review of ecogeochemistry approaches to estimating movements of marine animals. Limnol. Oceanogr. 58, 697–714 (2013).

    Article 
    CAS 

    Google Scholar 

  • 29.

    Hedges, R. E., Clement, J. G., Thomas, C. D. L. & O’Connell, T. C. Collagen turnover in the adult femoral mid‐shaft: modeled from anthropogenic radiocarbon tracer measurements. Am. J. Phys. Anthropol. 133, 808–816 (2007).

    PubMed 
    Article 

    Google Scholar 

  • 30.

    Szpak, P., Savelle, J. M., Conolly, J. & Richards, M. P. Variation in late Holocene marine environments in the Canadian Arctic Archipelago: evidence from ringed seal bone collagen stable isotope compositions. Quat. Sci. Rev. 211, 136–155 (2019).

    Article 

    Google Scholar 

  • 31.

    Szpak, P. & Buckley, M. Sulfur isotopes (δ34S) in Arctic marine mammals: indicators of benthic vs. pelagic foraging? Mar. Ecol. Prog. Ser. https://doi.org/10.3354/meps13493 (2020).

  • 32.

    Reeves, R. R. in Ringed Seals in the North Atlantic (eds Heide-Jørgensen, M. P. & Lydersen, C.) 9–45 (NAMMCO Scientific Publications, 1998).

  • 33.

    Koehler, G., Kardynal, K. J. & Hobson, K. A. Geographical assignment of polar bears using multi-element isoscapes. Sci. Rep. 9, 9390 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 34.

    Moody, J. F. & Hodgetts, L. M. Subsistence practices of pioneering Thule–Inuit: a faunal analysis of Tiktalik. Arct. Anthropol. 50, 4–24 (2013).

    Article 

    Google Scholar 

  • 35.

    Dyke, A. S. et al. An assessment of marine reservoir corrections for radiocarbon dates on walrus from the Foxe Basin region of Arctic Canada. Radiocarbon 61, 67–81 (2019).

    Article 
    CAS 

    Google Scholar 

  • 36.

    Derocher, A. E., Wiig, Ø. & Andersen, M. Diet composition of polar bears in Svalbard and the western Barents Sea. Polar Biol. 25, 448–452 (2002).

    Article 

    Google Scholar 

  • 37.

    Hobson, K. A. et al. A stable isotope (δ13C, δ15N) model for the North Water food web: implications for evaluating trophodynamics and the flow of energy and contaminants. Deep Sea Res. Part II Top. Stud. Oceanogr. 49, 5131–5150 (2002).

    Article 
    CAS 

    Google Scholar 

  • 38.

    Iverson, S. J., Stirling, I. & Lang, S. L. C. in Top Predators in Marine Ecosystems (eds Boyd, I. L., Wanless, S. & Camphuysen, C. J.) 98–117 (Cambridge University Press, 2006).

  • 39.

    Thiemann, G. W., Iverson, S. J. & Stirling, I. Polar bear diets and arctic marine food webs: insights from fatty acid analysis. Ecol. Monogr. 78, 591–613 (2008).

    Article 

    Google Scholar 

  • 40.

    Stein, R. & MacDonald, R. W. The Organic Carbon Cycle in the Arctic Ocean (Springer, 2004).

  • 41.

    Lynch‐Stieglitz, J., Stocker, T. F., Broecker, W. S. & Fairbanks, R. G. The influence of air‐sea exchange on the isotopic composition of oceanic carbon: Observations and modeling. Glob. Biogeochem. Cycles 9, 653–665 (1995).

    Article 

    Google Scholar 

  • 42.

    Hobson, K. A., Ambrose, W. G. Jr & Renaud, P. E. Sources of primary production, benthic-pelagic coupling, and trophic relationships within the Northeast Water Polynya: insights from δ13C and δ15N analysis. Mar. Ecol. Prog. Ser. 128, 1–10 (1995).

    Article 

    Google Scholar 

  • 43.

    France, R., Loret, J., Mathews, R. & Springer, J. Longitudinal variation in zooplankton δ13C through the Northwest Passage: inference for incorporation of sea-ice POM into pelagic foodwebs. Polar Biol. 20, 335–341 (1998).

    Article 

    Google Scholar 

  • 44.

    Søreide, J. E., Hop, H., Carroll, M. L., Falk-Petersen, S. & Hegseth, E. N. Seasonal food web structures and sympagic–pelagic coupling in the European Arctic revealed by stable isotopes and a two-source food web model. Prog. Oceanogr. 71, 59–87 (2006).

    Article 

    Google Scholar 

  • 45.

    Saupe, S. M., Schell, D. M. & Griffiths, W. B. Carbon-isotope ratio gradients in western arctic zooplankton. Mar. Biol. 103, 427–432 (1989).

    Article 
    CAS 

    Google Scholar 

  • 46.

    Schell, D. M., Barnett, B. A. & Vinette, K. A. Carbon and nitrogen isotope ratios in zooplankton of the Bering, Chukchi and Beaufort seas. Mar. Ecol. Prog. Ser. 162, 11–23 (1998).

    Article 
    CAS 

    Google Scholar 

  • 47.

    Tamelander, T., Kivimäe, C., Bellerby, R. G., Renaud, P. E. & Kristiansen, S. Base-line variations in stable isotope values in an Arctic marine ecosystem: effects of carbon and nitrogen uptake by phytoplankton. Hydrobiologia 630, 63–73 (2009).

    Article 
    CAS 

    Google Scholar 

  • 48.

    Pomerleau, C. et al. Spatial patterns in zooplankton communities across the eastern Canadian sub-Arctic and Arctic waters: insights from stable carbon (δ13C) and nitrogen (δ15N) isotope ratios. J. Plankton Res. 33, 1779–1792 (2011).

    Article 
    CAS 

    Google Scholar 

  • 49.

    Pomerleau, C. et al. Pan-Arctic concentrations of mercury and stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) in marine zooplankton. Sci. Total Environ. 551, 92–100 (2016).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 50.

    De la Vega, C., Jeffreys, R. M., Tuerena, R., Ganeshram, R. & Mahaffey, C. Temporal and spatial trends in marine carbon isotopes in the Arctic Ocean and implications for food web studies. Glob. Chang. Biol. 25, 4116–4130 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 51.

    Goni, M. A., Yunker, M. B., Macdonald, R. W. & Eglinton, T. I. Distribution and sources of organic biomarkers in arctic sediments from the Mackenzie River and Beaufort Shelf. Mar. Chem. 71, 23–51 (2000).

    Article 
    CAS 

    Google Scholar 

  • 52.

    Parsons, T. R. et al. Autotrophic and heterotrophic production in the Mackenzie River/Beaufort Sea estuary. Polar Biol. 9, 261–266 (1989).

    Article 

    Google Scholar 

  • 53.

    Dehn, L. A. et al. Feeding ecology of phocid seals and some walrus in the Alaskan and Canadian Arctic as determined by stomach contents and stable isotope analysis. Polar Biol. 30, 167–181 (2007).

    Article 

    Google Scholar 

  • 54.

    Butt, C. M., Mabury, S. A., Kwan, M., Wang, X. & Muir, D. C. Spatial trends of perfluoroalkyl compounds in ringed seals (Phoca hispida) from the Canadian Arctic. Environ. Toxicol. Chem. 27, 542–553 (2008).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 55.

    Dittmar, T. & Kattner, G. The biogeochemistry of the river and shelf ecosystem of the Arctic Ocean: a review. Mar. Chem. 83, 103–120 (2003).

    Article 
    CAS 

    Google Scholar 

  • 56.

    Pons, M. L. et al. A Zn isotope perspective on the rise of continents. Geobiology 11, 201–214 (2013).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 57.

    Isson, T. T. et al. Tracking the rise of eukaryotes to ecological dominance with zinc isotopes. Geobiology 16, 341–352 (2018).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 58.

    Samanta, M., Ellwood, M. J. & Strzepek, R. F. Zinc isotope fractionation by Emiliania huxleyi cultured across a range of free zinc ion concentrations. Limnol. Oceanogr. 63, 660–671 (2018).

    Article 
    CAS 

    Google Scholar 

  • 59.

    Köbberich, M. & Vance, D. Zn isotope fractionation during uptake into marine phytoplankton: implications for oceanic zinc isotopes. Chem. Geol. 523, 154–161 (2019).

    Article 
    CAS 

    Google Scholar 

  • 60.

    Maréchal, C. N., Nicolas, E., Douchet, C. & Albarède, F. Abundance of zinc isotopes as a marine biogeochemical tracer. Geochem. Geophys. Geosyst. 1, 1015 (2000).

    Article 

    Google Scholar 

  • 61.

    John, S. G. The Marine Biogeochemistry of Zinc Isotopes. [Doctoral Thesis]. (Massachusetts Institute of Technology, 2007).

  • 62.

    Conway, T. M. & John, S. G. The biogeochemical cycling of zinc and zinc isotopes in the North Atlantic Ocean. Glob. Biogeochem. Cycles 28, 1111–1128 (2014).

    Article 
    CAS 

    Google Scholar 

  • 63.

    Wyatt, N. J. et al. Biogeochemical cycling of dissolved zinc along the GEOTRACES South Atlantic transect GA10 at 40°S. Glob. Biogeochem. Cycles 28, 44–56 (2014).

    Article 
    CAS 

    Google Scholar 

  • 64.

    John, S. G. & Conway, T. M. A role for scavenging in the marine biogeochemical cycling of zinc and zinc isotopes. Earth Planet. Sci. Lett. 394, 159–167 (2014).

    Article 
    CAS 

    Google Scholar 

  • 65.

    Sieber, M. et al. Cycling of zinc and its isotopes across multiple zones of the Southern Ocean: insights from the Antarctic Circumnavigation Expedition. Geochim. Cosmochim. Acta 268, 310–324 (2020).

    Article 
    CAS 

    Google Scholar 

  • 66.

    Samanta, M., Ellwood, M. J., Sinoir, M. & Hassler, C. S. Dissolved zinc isotope cycling in the Tasman Sea, SW Pacific Ocean. Mar. Chem. 192, 1–12 (2017).

    Article 
    CAS 

    Google Scholar 

  • 67.

    Little, S. H., Vance, D., Walker-Brown, C. & Landing, W. M. The oceanic mass balance of copper and zinc isotopes, investigated by analysis of their inputs, and outputs to ferromanganese oxide sediments. Geochim. Cosmochim. Acta 125, 673–693 (2014).

    Article 
    CAS 

    Google Scholar 

  • 68.

    Zhao, Y., Vance, D., Abouchami, W. & De Baar, H. J. Biogeochemical cycling of zinc and its isotopes in the Southern Ocean. Geochim. Cosmochim. Acta 125, 653–672 (2014).

    Article 
    CAS 

    Google Scholar 

  • 69.

    Liao, W. H. et al. Zn isotope composition in the water column of the Northwestern Pacific Ocean: the importance of external sources. Glob. Biogeochem. Cycles 34, e2019GB006379 (2020).

    CAS 

    Google Scholar 

  • 70.

    Vance, D., de Souza, G. F., Zhao, Y., Cullen, J. T. & Lohan, M. C. The relationship between zinc, its isotopes, and the major nutrients in the North-East Pacific. Earth Planet. Sci. Lett. 525, 115748 (2019).

    Article 
    CAS 

    Google Scholar 

  • 71.

    Jensen, L. T. et al. Biogeochemical cycling of dissolved zinc in the Western Arctic (Arctic GEOTRACES GN01). Glob. Biogeochem. Cycles 33, 343–369 (2019).

    Article 
    CAS 

    Google Scholar 

  • 72.

    DeNiro, M. J. Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature 317, 806–809 (1985).

    Article 
    CAS 

    Google Scholar 

  • 73.

    Ambrose, S. H. Preparation and characterization of bone and tooth collagen for isotopic analysis. J. Archaeol. Sci. 17, 431–451 (1990).

    Article 

    Google Scholar 

  • 74.

    Muir, D. C. G. et al. Can seal eating explain elevated levels of PCBs and organochlorine pesticides in walrus blubber from eastern Hudson Bay (Canada)? Environ. Pollut. 90, 335–348 (1995).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 75.

    Young, B. G. & Ferguson, S. H. Seasons of the ringed seal: pelagic open-water hyperphagy, benthic feeding over winter and spring fasting during molt. Wildl. Res. 40, 52–60 (2013).

    Article 
    CAS 

    Google Scholar 

  • 76.

    Matley, J. K., Fisk, A. T. & Dick, T. A. Foraging ecology of ringed seals (Pusa hispida), beluga whales (Delphinapterus leucas) and narwhals (Monodon monoceros) in the Canadian High Arctic determined by stomach content and stable isotope analysis. Polar Res. 34, 24295 (2015).

    Article 
    CAS 

    Google Scholar 

  • 77.

    Michel, C., Ingram, R. G. & Harris, L. R. Variability in oceanographic and ecological processes in the Canadian Arctic Archipelago. Prog. Oceanogr. 71, 379–401 (2006).

    Article 

    Google Scholar 

  • 78.

    Tremblay, J. É., Gratton, Y., Carmack, E. C., Payne, C. D. & Price, N. M. Impact of the large‐scale Arctic circulation and the North Water Polynya on nutrient inventories in Baffin Bay. J. Geophys. Res. 107, 3112 (2002).

    Article 

    Google Scholar 

  • 79.

    Ingram, R. G., Bâcle, J., Barber, D. G., Gratton, Y. & Melling, H. An overview of physical processes in the North Water. Deep Sea Res. Part II Top. Stud. Oceanogr. 49, 4893–4906 (2002).

    Article 

    Google Scholar 

  • 80.

    Pauly, D., Trites, A. W., Capuli, E. & Christensen, V. Diet composition and trophic levels of marine mammals. ICES J. Mar. Sci. 55, 467–481 (1998).

    Article 

    Google Scholar 

  • 81.

    Woollett, J. Oakes Bay 1: a preliminary reconstruction of a Labrador Inuit seal hunting economy in the context of climate change. Geogr. Tidsskr. 110, 245–259 (2010).

    Article 

    Google Scholar 

  • 82.

    Stirling, I. & Archibald, W. R. Aspects of predation of seals by polar bears. J. Fish. Res. Board Can. 34, 1126–1129 (1977).

    Article 

    Google Scholar 

  • 83.

    Pilfold, N. W., Derocher, A. E., Stirling, I. & Richardson, E. Polar bear predatory behaviour reveals seascape distribution of ringed seal lairs. Popul. Ecol. 56, 129–138 (2014).

    Article 

    Google Scholar 

  • 84.

    Elorriaga-Verplancken, F., Aurioles-Gamboa, D., Newsome, S. D. & Martínez-Díaz, S. F. δ15N and δ13C values in dental collagen as a proxy for age-and sex-related variation in foraging strategies of California sea lions. Mar. Biol. 160, 641–652 (2013).

    Article 
    CAS 

    Google Scholar 

  • 85.

    Hauser, D. D., Laidre, K. L., Suydam, R. S. & Richard, P. R. Population-specific home ranges and migration timing of Pacific Arctic beluga whales (Delphinapterus leucas). Polar Biol. 37, 1171–1183 (2014).

    Article 

    Google Scholar 

  • 86.

    Harwood, L. A., Smith, T. G., Auld, J., Melling, H. & Yurkowski, D. J. Seasonal movements and diving of ringed seals, Pusa hispida, in the Western Canadian Arctic, 1999–2001 and 2010–11. Arctic 68, 193–209 (2015).

    Article 

    Google Scholar 

  • 87.

    Ferguson, S. H., Taylor, M. K., Born, E. W., Rosing-Asvid, A. & Messier, F. Activity and movement patterns of polar bears inhabiting consolidated versus active pack ice. Arctic 54, 49–54. (2001).

    Article 

    Google Scholar 

  • 88.

    Lunn, N. J. et al. Polar bear management in Canada 1997–2000. In: Proc. 13th Working Meeting of the IUCN/SSC Polar Bear Specialist Group, 23–28 June 2001, Nuuk, Greenland. Occasional Paper 26 (eds Lunn, N. J., Schliebe, S. & Born, E. W.) 41–52 (IUCN, 2002).

  • 89.

    Ronald, K. & Dougan, J. L. The ice lover: biology of the harp seal (Phoca groenlandica). Science 215, 928–933 (1982).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 90.

    Sergeant, D. E. Harp seals, man and ice. Can. Spec. Publ. Fish. Aquat. Sci. 114, (1991).

  • 91.

    Ogloff, W. R., Yurkowski, D. J., Davoren, G. K. & Ferguson, S. H. Diet and isotopic niche overlap elucidate competition potential between seasonally sympatric phocids in the Canadian Arctic. Mar. Biol. 166, 103 (2019).

    Article 
    CAS 

    Google Scholar 

  • 92.

    Mansfield, A. W. Seals of arctic and eastern Canada. Fish. Res. Board Canada Bull. 137 (1963).

  • 93.

    Sergeant, D. E. Migrations of harp seals Pagophilus groenlandicus (Erxleben) in the Northwest Atlantic. J. Fish. Res. Board Can. 22, 433–464 (1965).

    Article 

    Google Scholar 

  • 94.

    Richard, P. R., Heide-Jørgensen, M. P., Orr, J. R., Dietz, R. & Smith, T. G. Summer and autumn movements and habitat use by belugas in the Canadian High Arctic and adjacent areas. Arctic 54, 207–222 (2001).

    Google Scholar 

  • 95.

    Maréchal, C. N., Télouk, P. & Albarède, F. Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry. Chem. Geol. 156, 251–273 (1999).

    Article 

    Google Scholar 

  • 96.

    Moynier, F., Albarède, F. & Herzog, G. F. Isotopic composition of zinc, copper, and iron in lunar samples. Geochim. Cosmochim. Acta 70, 6103–6117 (2006).

    Article 
    CAS 

    Google Scholar 

  • 97.

    Toutain, J. P. et al. Evidence for Zn isotopic fractionation at Merapi volcano. Chem. Geol. 253, 74–82 (2008).

    Article 
    CAS 

    Google Scholar 

  • 98.

    Copeland, S. R. et al. Strontium isotope ratios (87Sr/86Sr) of tooth enamel: a comparison of solution and laser ablation multicollector inductively coupled plasma mass spectrometry methods. Rapid Commun. Mass Spectrom. 22, 3187–3194 (2008).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 99.

    Brown, T. A., Nelson, D. E., Vogel, J. S. & Southon, J. R. Improved collagen extraction by modified Longin method. Radiocarbon 30, 171–177 (1988).

    Article 
    CAS 

    Google Scholar 

  • 100.

    Qi, H., Coplen, T. B., Geilmann, H., Brand, W. A. & Böhlke, J. K. Two new organic reference materials for δ13C and δ15N measurements and a new value for the δ13C of NBS 22 oil. Rapid Commun. Mass Spectrom. 17, 2483–2487 (2003).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 101.

    Szpak, P., Metcalfe, J. Z. & Macdonald, R. A. Best practices for calibrating and reporting stable isotope measurements in archaeology. J. Archaeol. Sci. Rep. 13, 609–616 (2017).

    Google Scholar 

  • 102.

    R Core Team, R version 3.6.1 (R Foundation for Statistical Computing, Vienna, Austria, 2018).

  • 103.

    Haug, T. et al. Trophic level and fatty acids in harp seals compared with common minke whales in the Barents Sea. Mar. Biol. Res. 13, 919–932 (2017).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Accelerating AI at the speed of light

    Exploring the future of humanitarian technology