Lee, X. et al. Observed increase in local cooling effect of deforestation at higher latitude. Nature 479, 384–387 (2011).
Google Scholar
Li, Y. et al. Local cooling and warming effects of forests based on satellite observations. Nat. Commun. https://doi.org/10.1038/ncomms7603 (2015).
Duveiller, G., Hooker, J. & Cescatti, A. The mark of vegetation change on Earth’s surface energy balance. Nat. Commun. https://doi.org/10.5194/essd-2018-24 (2018).
Jia, G. et al. in Special Report on Climate Change and Land (eds Shukla, P. R. et al.) Ch. 2 (IPCC, 2019).
Lejeune, Q., Seneviratne, S. I. & Davin, E. L. Historical land-cover change impacts on climate: comparative assessment of LUCID and CMIP5 multimodel experiments. J. Clim. 30, 1439–1459 (2017).
Google Scholar
Winckler, J., Reick, C. H. & Pongratz, J. Robust identification of local biogeophysical effects of land-cover change in a global climate model. J. Clim. 30, 1159–1176 (2017).
Google Scholar
Duveiller, G. et al. Biophysics and vegetation cover change: a process-based evaluation framework for confronting land surface models with satellite observations. Earth Syst. Sci. Data 10, 1265–1279 (2018).
Google Scholar
Meier, R. et al. Evaluating and improving the Community Land Model’s sensitivity to land cover. Biogeosciences 15, 4731–4757 (2018).
Google Scholar
Meier, R., Davin, E. L., Swenson, S. C., Lawrence, D. M. & Schwaab, J. Biomass heat storage dampens diurnal temperature variations in forests. Environ. Res. Lett. 14, 084026 (2019).
Google Scholar
Spracklen, D., Arnold, S. & Taylor, C. Observations of increased tropical rainfall preceded by air passage over forests. Nature 489, 282–285 (2012).
Google Scholar
Lejeune, Q., Davin, E. L., Guillod, B. P. & Seneviratne, S. I. Influence of Amazonian deforestation on the future evolution of regional surface fluxes, circulation, surface temperature and precipitation. Clim. Dyn. 44, 2769–2786 (2015).
Google Scholar
Khanna, J., Medvigy, D., Fueglistaler, S. & Walko, R. Regional dry-season climate changes due to three decades of Amazonian deforestation. Nat. Clim. Change 7, 200–204 (2017).
Google Scholar
Yosef, G. et al. Large-scale semi-arid afforestation can enhance precipitation and carbon sequestration potential. Sci. Rep. https://doi.org/10.1038/s41598-018-19265-6 (2018).
Belušić, D., Fuentes-Franco, R., Strandberg, G. & Jukimenko, A. Afforestation reduces cyclone intensity and precipitation extremes over Europe. Environ. Res. Lett. 14, 074009 (2019).
Google Scholar
Perugini, L. et al. Biophysical effects on temperature and precipitation due to land cover change. Environ. Res. Lett. 12, 053002 (2017).
Google Scholar
Sandel, B. & Svenning, J. Human impacts drive a global topographic signature in tree cover. Nat. Commun. https://doi.org/10.1038/ncomms3474 (2013).
Fuchs, R., Herold, M., Verburg, P. H. & Clevers, J. G. P. W. A high-resolution and harmonized model approach for reconstructing and analysing historic land changes in Europe. Biogeosciences 10, 1543–1559 (2013).
Google Scholar
Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).
Google Scholar
Fuchs, R., Herold, M., Verburg, P. H., Clevers, J. G. & Eberle, J. Gross changes in reconstructions of historic land cover/use for Europe between 1900 and 2010. Glob. Change Biol. 21, 299–313 (2014).
Google Scholar
McGrath, M. J. et al. Reconstructing European forest management from 1600 to 2010. Biogeosciences 12, 4291–4316 (2015).
Google Scholar
Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).
Google Scholar
Navarro, L. M. & Pereira, H. M. Rewilding Abandoned Landscapes in Europe (Springer, 2015).
Lewis, E. et al. GSDR: a global sub-daily rainfall dataset. J. Clim. 32, 4715–4729 (2019).
Google Scholar
Menne, M. J., Durre, I., Vose, R. S., Gleason, B. E. & Houston, T. G. An overview of the global historical climatology network-daily database. J. Atmos. Ocean. Technol. 29, 897–910 (2012).
Google Scholar
Menne, M. J. et al. Global Historical Climatology Network—Daily (GHCN-Daily) Version 3.20 (NOAA, 2012); https://doi.org/10.7289/V5D21VHZ
Zhang, M. et al. Response of surface air temperature to small-scale land clearing across latitudes. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/9/3/034002 (2014).
Liu, H., Randerson, J. T., Lindfors, J. & Chapin, F. S. III Changes in the surface energy budget after fire in boreal ecosystems of interior Alaska: an annual perspective. J. Geophys. Res. https://doi.org/10.1029/2004JD005158 (2005).
Juang, J.-Y., Katul, G., Siqueira, M., Stoy, P. & Novick, K. Separating the effects of albedo from eco-physiological changes on surface temperature along a successional chronosequence in the southeastern United States. Geophys. Res. Lett. https://doi.org/10.1029/2007GL031296 (2007).
Vanden Broucke, S., Luyssaert, S., Davin, E. L., Janssens, I. & van Lipzig, N. New insights in the capability of climate models to simulate the impact of LUC based on temperature decomposition of paired site observations. J. Geophys. Res. Atmos. 120, 5417–5436 (2015).
Google Scholar
Beck, H. E. et al. MSWEP V2 global 3-hourly 0.1° precipitation: methodology and quantitative assessment. Bull. Am. Meteorol. Soc. 100, 473–500 (2019).
Google Scholar
Schwaab, J. et al. Increasing the broad-leaved tree fraction in European forests mitigates hot temperature extremes. Sci. Rep. 10, 14153 (2020).
Google Scholar
Cohn, A. S. et al. Forest loss in Brazil increases maximum temperatures within 50 km. Environ. Res. Lett. 14, 084047 (2019).
Google Scholar
Houze, R. A. Jr Orographic effects on precipitating clouds. Rev. Geophys. https://doi.org/10.1029/2011RG000365 (2012).
C3S ERA5-Land Reanalysis (Copernicus Climate Change Service, 2019).
Daly, C. et al. Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Climatol. 28, 2031–2064 (2008).
Google Scholar
Sprenger, M. & Wernli, H. The LAGRANTO Lagrangian analysis tool—version 2.0. Geosci. Model Dev. 8, 2569–2586 (2015).
Google Scholar
Kosztra, B., Büttner, G., Hazeu, G. & Arnold, S. Updated CLC Illustrated Nomenclature Guidelines (European Environment Agency, 2019).
Duveiller, G., Fasbender, D. & Meroni, M. Revisiting the concept of a symmetric index of agreement for continuous datasets. Sci. Rep. 6, 19401 (2016).
Google Scholar
Griscom, B. W. et al. Global Reforestation Potential Map (Zenodo, 2017); https://doi.org/10.5281/zenodo.883444
Sheffield, J. & Wood, E. F. Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Clim. Dyn. 31, 79–105 (2008).
Google Scholar
Kotlarski, S. et al. Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble. Geosci. Model Dev. 7, 1297–1333 (2014).
Google Scholar
Prein, A. F. et al. A review on regional convection-permitting climate modeling: demonstrations, prospects, and challenges. Rev. Geophys. 53, 323–361 (2015).
Google Scholar
Liu, J. & Niyogi, D. Meta-analysis of urbanization impact on rainfall modification. Sci. Rep. https://doi.org/10.1038/s41598-019-42494-2 (2019).
Van der Ent, R. J. & Savenije, H. H. G. Length and time scales of atmospheric moisture recycling. Atmos. Chem. Phys. 11, 1853–1863 (2011).
Google Scholar
Rüdisühli, S., Sprenger, M., Leutwyler, D., Schär, C. & Wernli, H. Attribution of precipitation to cyclones and fronts over Europe in a kilometer-scale regional climate simulation. Weather Clim. Dyn. 1, 675–699 (2020).
Google Scholar
Schultz, N. M., Lawrence, P. J. & Lee, X. Global satellite data highlights the diurnal asymmetry of the surface temperature response to deforestation. J. Geophys. Res. Biogeosci. 122, 903–917 (2017).
Google Scholar
Pollock, M. D. et al. Quantifying and mitigating wind-induced undercatch in rainfall measurements. Water Resour. Res. 54, 3863–3875 (2018).
Google Scholar
Trabucco, A., Zomer, R. J., Bossio, D. A., Straaten], O. V. & Verchot, L. V. Climate change mitigation through afforestation/reforestation: a global analysis of hydrologic impacts with four case studies. Agr. Ecosyst. Environ. 126, 81–97 (2008).
Google Scholar
Padrón, R. S., Gudmundsson, L., Greve, P. & Seneviratne, S. I. Large-scale controls of the surface water balance over land: insights from a systematic review and meta-analysis. Water Resour. Res. 53, 9659–9678 (2017).
Google Scholar
Beck, H. E. et al. MSWEP: 3-hourly 0.25° global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis data. Hydrol. Earth Syst. Sci. 21, 589–615 (2017).
Google Scholar
Beck, H. E. et al. Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling. Hydrol. Earth Syst. Sci. 21, 6201–6217 (2017).
Google Scholar
Beck, H. E. et al. Daily evaluation of 26 precipitation datasets using stage-IV gauge-radar data for the CONUS. Hydrol. Earth Syst. Sci. 23, 207–224 (2019).
Google Scholar
Lu, N. Scale effects of topographic ruggedness on precipitation over Qinghai-Tibet Plateau. Atmos. Sci. Lett. 20, e904 (2019).
Google Scholar
EU-DEM Statistical Validation (EEA, 2014).
Siebert, S., Henrich, V., Frenken, K. & Burke, J. Global Map of Irrigation Areas Version 5 (Rheinische Friedrich-Wilhelms-University and FAO, 2013).
DeAngelis, A. et al. Evidence of enhanced precipitation due to irrigation over the Great Plains of the United States. J. Geophys. Res. Atmos. https://doi.org/10.1029/2010JD013892 (2010).
Thiery, W. et al. Present-day irrigation mitigates heat extremes. J. Geophys. Res. 122, 1403–1422 (2017).
Google Scholar
Wernli, B. H. & Davies, H. C. A Lagrangian-based analysis of extratropical cyclones. I: the method and some applications. Q. J. R. Meteorol. Soc. 123, 467–489 (1997).
Google Scholar
Smith, A., Lott, N. & Vose, R. The integrated surface database: recent developments and partnerships. Bull. Am. Meteorol. Soc. 92, 704–708 (2011).
Google Scholar
Blenkinsop, S., Lewis, E., Chan, S. C. & Fowler, H. J. Quality-control of an hourly rainfall dataset and climatology of extremes for the UK. Int. J. Climatol. 37, 722–740 (2017).
Google Scholar
Wood, S. N. Generalized Additive Models: An Introduction with R 2nd edn (CRC Press, 2017).
Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. 73, 3–36 (2011).
Google Scholar
Wood, S. N., Li, Z., Shaddick, G. & Augustin, N. H. Generalized additive models for gigadata: modeling the UK black smoke network daily data. J. Am. Stat. Assoc. 112, 1199–1210 (2017).
Google Scholar
Li, Z. & Wood, S. N. Faster model matrix crossproducts for large generalized linear models with discretized covariates. Stat. Comput. 30, 19–25 (2020).
Google Scholar
Dormann, C. et al. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30, 609–628 (2007).
Google Scholar
CH2018. 2018 Climate Scenarios for Switzerland (National Centre for Climate Services, 2018).
Prein, A. F. et al. Precipitation in the EURO-CORDEX 0.11° and 0.44° simulations: high resolution, high benefits? Clim. Dyn. 46, 383–412 (2016).
Google Scholar
Jacob, D. et al. EURO-CORDEX: new high-resolution climate change projections for European impact research. Reg. Environ. Change 14, 563–578 (2014).
Google Scholar
Digital Chart of the World (DMA and USGS, 1992).
Source: Resources - nature.com