in

Safeguarding the microbial water quality from source to tap

[adace-ad id="91168"]
  • 1.

    Prest, E. I., Hammes, F., van Loosdrecht, M. C. M. & Vrouwenvelder, J. S. Biological stability of drinking water: controlling factors, methods, and challenges. Front. Microbiol. 7, 45 (2016).

    Article 

    Google Scholar 

  • 2.

    de Moel, P. J., Verberk, J. Q. J. C. & van Dijk, J. C. Drinking water: Principles and practices. Drinking water: Principles and practices. (World Scientific Publishing Co., 2006). https://doi.org/10.1142/6135.

  • 3.

    Nescerecka, A., Rubulis, J., Vital, M., Juhna, T. & Hammes, F. Biological instability in a chlorinated drinking water distribution network. PLoS ONE 9, e96354 (2014).

    Article 
    CAS 

    Google Scholar 

  • 4.

    Skjevrak, I., Lund, V., Ormerod, K., Due, A. & Herikstad, H. Biofilm in water pipelines; a potential source for off-flavours in the drinking water. Water Sci. Technol. 49, 211–217 (2004).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Zhang, Y., Love, N. & Edwards, M. Nitrification in drinking water systems. Crit. Rev. Envi Sci. Tech. 39, 153–208 (2009).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Liu, S. et al. Understanding, monitoring, and controlling biofilm growth in drinking water distribution systems. Environ. Sci. Technol. 50, 8954–8976 (2016).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Litke, D. W. Review of phosphorus control measures in the United States and their effects on water quality. U.S. Geological Survey Water-Resources Investigations Report 99–4007. http://pubs.usgs.gov/wri/wri994007/pdf/wri99-4007.pdf (1999).

  • 8.

    EC. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. OJEC https://doi.org/10.1039/ap9842100196 (2000).

  • 9.

    European Environmental Agency. European waters Assessment of status and pressures 2018. https://www.eea.europa.eu/publications/state-of-water (2018).

  • 10.

    Konapala, G., Mishra, A. K., Wada, Y. & Mann, M. E. Climate Change will affect global water availability through compounding changes in seasonal precipitation and evaporation. Nat. Commun. 11, 3044 (2020).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Grillakis, M. G. Increase in severe and extreme soil moisture droughts for Europe under climate change. Sci. Total Environ. 660, 1245–1255 (2019).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Myhre, G. et al. Frequency of extreme precipitation increases extensively with event rareness under global warming. Sci. Rep. 9, 012131 (2019).

    Article 
    CAS 

    Google Scholar 

  • 13.

    Richey, A. S. et al. Quantifying renewable groundwater stress with GRACE. Water Resour. Res. 51, 5217–5237 (2015).

    Article 

    Google Scholar 

  • 14.

    Lace, I., Krauklis, K., Spalviņš, A. & Laicans, J. Implementations of Riga city water supply system founded on groundwater sources. IOP Conf. Ser. Mater. Sci. Eng. 251, 012131 (2017).

    Article 

    Google Scholar 

  • 15.

    Oron, G. et al. Greywater use in Israel and worldwide: standards and prospects. Water Res. 58, 92–101 (2014).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Lahnsteiner, J. & Lempert, G. Water management in Windhoek, Namibia. Water Sci. Technol. 55, 441–448 (2007).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Vandenbohede, A., Houtte, E. Van & Lebbe, L. Water quality changes in the dunes of the western Belgian coastal plain due to artificial recharge of tertiary treated wastewater. Appl. Geochem. 24, 370–382 (2009).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Fish, K. E., Osborn, A. M. & Boxall, J. Characterising and understanding the impact of microbial biofilms and the extracellular polymeric substance (EPS) matrix in drinking water distribution systems. Environ. Sci. Water Res. Technol. 2, 614–630 (2016).

    Article 

    Google Scholar 

  • 19.

    Flemming, H. C. & Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 8, 623–633 (2010).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Tsao, H. F. et al. The cooling tower water microbiota: Seasonal dynamics and co-occurrence of bacterial and protist phylotypes. Water Res. 159, 464–479 (2019).

    CAS 
    Article 

    Google Scholar 

  • 21.

    van der Wielen, P. W. J. J. & van der Kooij, D. Nontuberculous mycobacteria, fungi, and opportunistic pathogens in unchlorinated drinking water in the Netherlands. Appl. Environ. Microbiol. 79, 825–834 (2013).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Cann, K. F., Thomas, D. R., Salmon, R. L., Wyn-Jones, A. P. & Kay, D. Extreme water-related weather events and waterborne disease. Epidemiol. Infect. 141, 671–686 (2013).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Sedlak, D. L. & Von Gunten, U. The chlorine dilemma. Science 331, 42–43 (2011).

    CAS 
    Article 

    Google Scholar 

  • 24.

    Nystrom, A., Grimvall, A., Krantz-Rulcker, C., Savenhed, R. & Akerstrand, K. Drinking water off-flavour caused by 2,4,6-trichloroanisole. Water Sci. Technol. 25, 241–249 (1992).

    Article 

    Google Scholar 

  • 25.

    van der Kooij, D. Assimilable organic carbon as an indicator of bacterial regrowth. J. Am. Water Work. Assoc. 84, 57–65 (1992).

    Article 

    Google Scholar 

  • 26.

    Rosario-Ortiz, F., Rose, J., Speight, V., Gunten, U. V. & Schnoor, J. How do you like your tap water? Science 351, 912–914 (2016).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Hammes, F., Berger, C., Köster, O. & Egli, T. Assessing biological stability of drinking water without disinfectant residuals in a full-scale water supply system. J. Water Supply Res. T 59, 31–40 (2010).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Baghoth, S. A., Dignum, M., Grefte, A., Kroesbergen, J. & Amy, G. L. Characterization of NOM in a drinking water treatment process train with no disinfectant residual. Water Sci. Tech.-W. Sup 9, 379–386 (2009).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Hambsch, B. Distributing groundwater without a disinfectant residual. J. Am. Water Work. Assoc. 91, 81–85 (1999).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Sousi, M. et al. Measuring Bacterial Growth Potential of Ultra-Low Nutrient Drinking Water Produced by Reverse Osmosis: Effect of Sample Pre-treatment and Bacterial Inoculum. Front. Microbiol. 11, 791 (2020).

    Article 

    Google Scholar 

  • 31.

    Lechevallier, M. W., Welch, N. J. & Smith, D. B. Full-scale studies of factors related to coliform regrowth in drinking water. Appl. Environ. Microbiol. 62, 2201–2211 (1996).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Servais, P., Barillier, A. & Garnier, J. Determination of the biodegradable fraction of dissolved and particulate organic carbon in waters. Ann. Limnol. – Int. J. Lim 31, 75–80 (1995).

    Article 

    Google Scholar 

  • 33.

    Van Nevel, S., De Roy, K. & Boon, N. Bacterial invasion potential in water is determined by nutrient availability and the indigenous community. FEMS Microbiol. Ecol. 85, 593–603 (2013).

    Article 
    CAS 

    Google Scholar 

  • 34.

    Vital, M., Stucki, D., Egli, T. & Hammes, F. Evaluating the growth potential of pathogenic bacteria in water. Appl. Environ. Microbiol. 76, 6477–6484 (2010).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Lehtola, M. J., Miettinen, I. T., Vartiainen, T., Myllykangas, T. & Martikainen, P. J. Microbially available organic carbon, phosphorus, and microbial growth in ozonated drinking water. Water Res. 35, 1635–1640 (2001).

    CAS 
    Article 

    Google Scholar 

  • 36.

    WHO. Guidelines for drinking-water quality, 4th edition, incorporating the 1st addendum. (World Health Organization, 2017).

  • 37.

    Sathasivan, A., Fisher, I. & Tam, T. Onset of severe nitrification in mildly nitrifying chloraminated bulk waters and its relation to biostability. Water Res. 42, 3623–3632 (2008).

    CAS 
    Article 

    Google Scholar 

  • 38.

    Rittmann, B. E. & Snoeyink, V. L. Achieving biologically stable drinking water. J. Am. Water Work. Assoc. 76, 106–110 (1984).

    CAS 
    Article 

    Google Scholar 

  • 39.

    Favere, J., Buysschaert, B., Boon, N. & De Gusseme, B. Online microbial fingerprinting for quality management of drinking water: Full-scale event detection. Water Res. 170, 115353 (2020).

    CAS 
    Article 

    Google Scholar 

  • 40.

    Prest, E. I., Hammes, F., Kötzsch, S., van Loosdrecht, M. C. M. & Vrouwenvelder, J. S. Monitoring microbiological changes in drinking water systems using a fast and reproducible flow cytometric method. Water Res. 47, 7131–7142 (2013).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Prest, E. I. et al. Combining flow cytometry and 16S rRNA gene pyrosequencing: a promising approach for drinking water monitoring and characterization. Water Res. 63, 179–189 (2014).

    CAS 
    Article 

    Google Scholar 

  • 42.

    Chatzigiannidou, I., Props, R. & Boon, N. Drinking water bacterial communities exhibit specific and selective necrotrophic growth. npj Clean Water 1, 22 (2018).

    Article 

    Google Scholar 

  • 43.

    MacArthur, R. H. & Wilson, E. O. The Theory of Island biogeography (MPB-1). (Princeton University Press, 2015).

  • 44.

    De Schryver, P. & Vadstein, O. Ecological theory as a foundation to control pathogenic invasion in aquaculture. ISME J. 8, 2360–2368 (2014).

    Article 

    Google Scholar 

  • 45.

    Brzeszcz, J., Steliga, T., Kapusta, P., Turkiewicz, A. & Kaszycki, P. r-strategist versus K-strategist for the application in bioremediation of hydrocarbon-contaminated soils. T Biodeterior. Biodegrad. Int. Biodeter. 106, 41–52 (2016).

    CAS 
    Article 

    Google Scholar 

  • 46.

    De Vrieze, J., Christiaens, M. E. R. & Verstraete, W. The microbiome as engineering tool: manufacturing and trading between microorganisms. N. Biotechnol. 39, 206–214 (2017).

    Article 
    CAS 

    Google Scholar 

  • 47.

    Tilman, D. Resources: a Graphical-Mechanistic Approach to Competition and Predation. Am. Nat. 116, 362–393 (1980).

    Article 

    Google Scholar 

  • 48.

    Jia, M., Winkler, M. K. H. & Volcke, E. I. P. Elucidating the Competition between Heterotrophic Denitrification and DNRA Using the Resource-Ratio Theory. Environ. Sci. Technol. 54, 13953–13962 (2020).

    Article 
    CAS 

    Google Scholar 

  • 49.

    Ho, A. et al. Conceptualizing functional traits and ecological characteristics of methane-oxidizing bacteria as life strategies. Environ. Microbiol. Rep. 5, 335–345 (2013).

    CAS 
    Article 

    Google Scholar 

  • 50.

    Vadstein, O., Attramadal, K. J. K., Bakke, I. & Olsen, Y. K-selection as microbial community management strategy: a method for improved viability of larvae in aquaculture. Front. Microbiol. 9, 1–17 (2018).

    Article 

    Google Scholar 

  • 51.

    Liu, G., Verberk, J. Q. J. C. & Van Dijk, J. C. Bacteriology of drinking water distribution systems: an integral and multidimensional review. Appl. Microbiol. Biotechnol. 97, 9265–9276 (2013).

    CAS 
    Article 

    Google Scholar 

  • 52.

    Lehtola, M. J., Miettinen, I. T. & Martikainen, P. J. Biofilm formation in drinking water affected by low concentrations of phosphorus. Can. J. Microbiol. 48, 494–499 (2002).

    CAS 
    Article 

    Google Scholar 

  • 53.

    Odum, E. P. & Barrett, G. W. Fundamentals of Ecology. Third Edition. Thomson, Brooks/Cole (W.B. Saunders Co., 1971).

  • 54.

    Andrews, J. H. & Harris, R. F. r- and K-Selection and Microbial Ecology. Advances in Microbial Ecology (Springer, Boston, MA, 1986). https://doi.org/10.1007/978-1-4757-0611-6_3.

  • 55.

    O’Neil, J. M., Davis, T. W., Burford, M. A. & Gobler, C. J. The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae 14, 313–334 (2012).

    CAS 
    Article 

    Google Scholar 

  • 56.

    Temmerman, R., Vervaeren, H., Noseda, B., Boon, N. & Verstraete, W. Necrotrophic growth of Legionella pneumophila. Appl. Environ. Microbiol. 72, 4323–4328 (2006).

    CAS 
    Article 

    Google Scholar 

  • 57.

    Besmer, M. D. et al. Laboratory-scale simulation and real-time tracking of a microbial contamination event and subsequent shock-chlorination in drinking water. Front. Microbiol. 8, 1900 (2017).

    Article 

    Google Scholar 

  • 58.

    Props, R., Monsieurs, P., Mysara, M., Clement, L. & Boon, N. Measuring the biodiversity of microbial communities by flow cytometry. Methods Ecol. Evol. 7, 1376e1385 (2016).

    Article 

    Google Scholar 

  • 59.

    Howell, D., Rogier, M., Yzerbyt, V. & Bestgen, Y. Méthodes statistiques en sciences humaines. (De Boeck Université, 1998).

  • 60.

    Marzorati, M., Wittebolle, L., Boon, N., Daffonchio, D. & Verstraete, W. How to get more out of molecular fingerprints: Practical tools for microbial ecology. Environ. Microbiol. 10, 1571–1581 (2008).

    CAS 
    Article 

    Google Scholar 

  • 61.

    Wittebolle, L. et al. Failure of the ammonia oxidation process in two pharmaceutical wastewater treatment plants is linked to shifts in the bacterial communities. J. Appl. Microbiol. 99, 997–1066 (2005).

    CAS 
    Article 

    Google Scholar 

  • 62.

    Boon, N., Pycke, B. F. G., Marzorati, M. & Hammes, F. Nutrient gradients in a granular activated carbon biofilter drives bacterial community organization and dynamics. Water Res. 45, 6355–6361 (2011).

    CAS 
    Article 

    Google Scholar 

  • 63.

    European Union. 98/83/EC on the quality of water intented for human consumption. OJEC 41, 32–54 (1998).

    Google Scholar 

  • 64.

    Liu, G. et al. Potential impacts of changing supply-water quality on drinking water distribution: a review. Water Res. 116, 135–148 (2017).

    CAS 
    Article 

    Google Scholar 

  • 65.

    White, S. A. & Cousins, M. M. Floating treatment wetland aided remediation of nitrogen and phosphorus from simulated stormwater runoff. Ecol. Eng. 127, 468–479 (2013).

    Google Scholar 

  • 66.

    Chang, N. Bin, Islam, K., Marimon, Z. & Wanielista, M. P. Assessing biological and chemical signatures related to nutrient removal by floating islands in stormwater mesocosms. Chemosphere 88, 736–743 (2012).

    CAS 
    Article 

    Google Scholar 

  • 67.

    Wu, Q., Hu, Y., Li, S., Peng, S. & Zhao, H. Microbial mechanisms of using enhanced ecological floating beds for eutrophic water improvement. Bioresour. Technol. 211, 451–456 (2016).

    CAS 
    Article 

    Google Scholar 

  • 68.

    Lin, J. L., Tu, Y. T., Chiang, P. C., Chen, S. H. & Kao, C. M. Using aerated gravel-packed contact bed and constructed wetland system for polluted river water purification: a case study in Taiwan. J. Hydrol. 525, 400–408 (2015).

    CAS 
    Article 

    Google Scholar 

  • 69.

    Benndorf, J. & Pütz, K. Control of eutrophication of lakes and reservoirs by means of pre-dams-I. Mode of operation and calculation of the nutrient elimination capacity. Water Res. 21, 829–838 (1987).

    CAS 
    Article 

    Google Scholar 

  • 70.

    Haghseresht, F., Wang, S. & Do, D. D. A novel lanthanum-modified bentonite, Phoslock, for phosphate removal from wastewaters. Appl. Clay Sci. 46, 369–375 (2009).

    CAS 
    Article 

    Google Scholar 

  • 71.

    Kumar, P., Korving, L., van Loosdrecht, M. C. M. & Witkamp, G. J. Adsorption as a technology to achieve ultra-low concentrations of phosphate: Research gaps and economic analysis. Water Res. X 4, 100029 (2019).

    CAS 
    Article 

    Google Scholar 

  • 72.

    Leistner, L. Basic aspects of food preservation by hurdle technology. Int. J. Food Microbiol. 55, 181–186 (2000).

    CAS 
    Article 

    Google Scholar 

  • 73.

    Barbosa, R. G., Sleutels, T., Verstraete, W. & Boon, N. Hydrogen oxidizing bacteria are capable of removing orthophosphate to ultra-low concentrations in a fed batch reactor configuration. Bioresour. Technol. 311, 123494 (2020).

    CAS 
    Article 

    Google Scholar 

  • 74.

    Jiang, Q., Song, X., Liu, J., Shao, Y. & Feng, Y. Enhanced nutrients enrichment and removal from eutrophic water using a self-sustaining in situ photomicrobial nutrients recovery cell (PNRC). Water Res. 167, 115097 (2019).

    CAS 
    Article 

    Google Scholar 

  • 75.

    Nescerecka, A., Juhna, T. & Hammes, F. Identifying the underlying causes of biological instability in a full-scale drinking water supply system. Water Res. 135, 11–21 (2018).

    CAS 
    Article 

    Google Scholar 

  • 76.

    Pinto, A. J., Schroeder, J., Lunn, M., Sloan, W. & Raskin, L. Spatial-temporal survey and occupancy-abundance modeling to predict bacterial community dynamics in the drinking water microbiomez. mBio 5, e01135–14 (2014).

    Article 
    CAS 

    Google Scholar 

  • 77.

    Fritzmann, C., Löwenberg, J., Wintgens, T. & Melin, T. State-of-the-art of reverse osmosis desalination. Desalination 216, 1–76 (2007).

    CAS 
    Article 

    Google Scholar 

  • 78.

    Grefte, A., Dignum, M., Baghoth, S. A., Cornelissen, E. R. & Rietveld, L. C. Improving the biological stability of drinking water by ion exchange. Water Sci. Tech.-W Sup. 11, 107–112 (2011).

    CAS 
    Article 

    Google Scholar 

  • 79.

    Park, S. K. & Hu, J. Y. Assessment of the extent of bacterial growth in reverse osmosis system for improving drinking water quality. J. Environ. Sci. Health A. 45, 968–977 (2010).

    CAS 
    Article 

    Google Scholar 

  • 80.

    Kirisits, M. J., Emelko, M. B. & Pinto, A. J. Applying biotechnology for drinking water biofiltration: advancing science and practice. Curr. Opin. Biotechnol. 57, 197–204 (2019).

    CAS 
    Article 

    Google Scholar 

  • 81.

    Pinto, A. J., Xi, C. & Raskin, L. Bacterial community structure in the drinking water microbiome is governed by filtration processes. Environ. Sci. Technol. 46, 8851–8859 (2012).

    CAS 
    Article 

    Google Scholar 

  • 82.

    Douterelo, I., Husband, S., Loza, V. & Boxall, J. Dynamics of biofilm regrowth in drinking water distribution systems. Appl. Environ. Microbiol. 82, 4155–4168 (2016).

    CAS 
    Article 

    Google Scholar 

  • 83.

    Van Nevel, S. et al. Flow cytometric bacterial cell counts challenge conventional heterotrophic plate counts for routine microbiological drinking water monitoring. Water Res. 113, 191–206 (2017).

    Article 
    CAS 

    Google Scholar 


  • Source: Resources - nature.com

    Seeking enhanced materials for nuclear reactors

    Concerns about reported harvests in European forests